Properties

Label 2-1875-1.1-c1-0-60
Degree $2$
Conductor $1875$
Sign $1$
Analytic cond. $14.9719$
Root an. cond. $3.86936$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.12·2-s + 3-s + 2.50·4-s + 2.12·6-s + 4.35·7-s + 1.07·8-s + 9-s − 1.57·11-s + 2.50·12-s + 1.19·13-s + 9.24·14-s − 2.73·16-s − 1.12·17-s + 2.12·18-s + 7.67·19-s + 4.35·21-s − 3.35·22-s − 2.32·23-s + 1.07·24-s + 2.54·26-s + 27-s + 10.9·28-s − 5.50·29-s + 4.80·31-s − 7.94·32-s − 1.57·33-s − 2.38·34-s + ⋯
L(s)  = 1  + 1.50·2-s + 0.577·3-s + 1.25·4-s + 0.866·6-s + 1.64·7-s + 0.378·8-s + 0.333·9-s − 0.476·11-s + 0.722·12-s + 0.332·13-s + 2.47·14-s − 0.684·16-s − 0.272·17-s + 0.500·18-s + 1.76·19-s + 0.951·21-s − 0.714·22-s − 0.483·23-s + 0.218·24-s + 0.498·26-s + 0.192·27-s + 2.06·28-s − 1.02·29-s + 0.862·31-s − 1.40·32-s − 0.275·33-s − 0.408·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1875\)    =    \(3 \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(14.9719\)
Root analytic conductor: \(3.86936\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1875,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.597198879\)
\(L(\frac12)\) \(\approx\) \(5.597198879\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
good2 \( 1 - 2.12T + 2T^{2} \)
7 \( 1 - 4.35T + 7T^{2} \)
11 \( 1 + 1.57T + 11T^{2} \)
13 \( 1 - 1.19T + 13T^{2} \)
17 \( 1 + 1.12T + 17T^{2} \)
19 \( 1 - 7.67T + 19T^{2} \)
23 \( 1 + 2.32T + 23T^{2} \)
29 \( 1 + 5.50T + 29T^{2} \)
31 \( 1 - 4.80T + 31T^{2} \)
37 \( 1 + 6.37T + 37T^{2} \)
41 \( 1 + 7.47T + 41T^{2} \)
43 \( 1 + 1.24T + 43T^{2} \)
47 \( 1 - 4.12T + 47T^{2} \)
53 \( 1 - 3.74T + 53T^{2} \)
59 \( 1 - 9.15T + 59T^{2} \)
61 \( 1 - 1.39T + 61T^{2} \)
67 \( 1 + 3.86T + 67T^{2} \)
71 \( 1 + 10.6T + 71T^{2} \)
73 \( 1 - 4.99T + 73T^{2} \)
79 \( 1 - 14.5T + 79T^{2} \)
83 \( 1 + 8.73T + 83T^{2} \)
89 \( 1 + 10.0T + 89T^{2} \)
97 \( 1 + 7.49T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.074421989436409202087523112620, −8.290167918081240736115922005248, −7.58853283457500251845160639106, −6.81331167874248381779046024514, −5.52360225195437263871588884970, −5.19556974659761105682144448394, −4.30036636280699055946058168804, −3.51890248366556082225406699454, −2.52322699462522008965164135012, −1.53805828270281050196862763619, 1.53805828270281050196862763619, 2.52322699462522008965164135012, 3.51890248366556082225406699454, 4.30036636280699055946058168804, 5.19556974659761105682144448394, 5.52360225195437263871588884970, 6.81331167874248381779046024514, 7.58853283457500251845160639106, 8.290167918081240736115922005248, 9.074421989436409202087523112620

Graph of the $Z$-function along the critical line