Properties

Label 2-1875-1.1-c1-0-6
Degree $2$
Conductor $1875$
Sign $1$
Analytic cond. $14.9719$
Root an. cond. $3.86936$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.70·2-s + 3-s + 0.911·4-s − 1.70·6-s − 3.94·7-s + 1.85·8-s + 9-s − 5.90·11-s + 0.911·12-s + 3.29·13-s + 6.72·14-s − 4.99·16-s + 2.70·17-s − 1.70·18-s − 2.35·19-s − 3.94·21-s + 10.0·22-s − 0.584·23-s + 1.85·24-s − 5.61·26-s + 27-s − 3.59·28-s − 3.91·29-s + 2.70·31-s + 4.80·32-s − 5.90·33-s − 4.61·34-s + ⋯
L(s)  = 1  − 1.20·2-s + 0.577·3-s + 0.455·4-s − 0.696·6-s − 1.49·7-s + 0.656·8-s + 0.333·9-s − 1.78·11-s + 0.263·12-s + 0.912·13-s + 1.79·14-s − 1.24·16-s + 0.656·17-s − 0.402·18-s − 0.540·19-s − 0.860·21-s + 2.14·22-s − 0.121·23-s + 0.379·24-s − 1.10·26-s + 0.192·27-s − 0.679·28-s − 0.726·29-s + 0.486·31-s + 0.849·32-s − 1.02·33-s − 0.791·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1875\)    =    \(3 \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(14.9719\)
Root analytic conductor: \(3.86936\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1875,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6558065109\)
\(L(\frac12)\) \(\approx\) \(0.6558065109\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
good2 \( 1 + 1.70T + 2T^{2} \)
7 \( 1 + 3.94T + 7T^{2} \)
11 \( 1 + 5.90T + 11T^{2} \)
13 \( 1 - 3.29T + 13T^{2} \)
17 \( 1 - 2.70T + 17T^{2} \)
19 \( 1 + 2.35T + 19T^{2} \)
23 \( 1 + 0.584T + 23T^{2} \)
29 \( 1 + 3.91T + 29T^{2} \)
31 \( 1 - 2.70T + 31T^{2} \)
37 \( 1 + 0.0208T + 37T^{2} \)
41 \( 1 - 1.47T + 41T^{2} \)
43 \( 1 - 1.27T + 43T^{2} \)
47 \( 1 - 5.43T + 47T^{2} \)
53 \( 1 - 2.81T + 53T^{2} \)
59 \( 1 + 4.69T + 59T^{2} \)
61 \( 1 - 5.58T + 61T^{2} \)
67 \( 1 - 6.03T + 67T^{2} \)
71 \( 1 + 8.10T + 71T^{2} \)
73 \( 1 - 13.3T + 73T^{2} \)
79 \( 1 - 16.6T + 79T^{2} \)
83 \( 1 - 0.781T + 83T^{2} \)
89 \( 1 + 3.47T + 89T^{2} \)
97 \( 1 + 2.45T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.292928525179429893909597036873, −8.454684471049539044758191190090, −7.911229861817684167447881406575, −7.18348276896578874171606924812, −6.27249498231025184251109000148, −5.31313643518395762088516634701, −4.03607478058044305324747557416, −3.10169617875115115336089245772, −2.17189411661529837186689437601, −0.61628103870051830695030692803, 0.61628103870051830695030692803, 2.17189411661529837186689437601, 3.10169617875115115336089245772, 4.03607478058044305324747557416, 5.31313643518395762088516634701, 6.27249498231025184251109000148, 7.18348276896578874171606924812, 7.911229861817684167447881406575, 8.454684471049539044758191190090, 9.292928525179429893909597036873

Graph of the $Z$-function along the critical line