Properties

Label 2-1875-1.1-c1-0-40
Degree $2$
Conductor $1875$
Sign $-1$
Analytic cond. $14.9719$
Root an. cond. $3.86936$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.61·2-s − 3-s + 0.618·4-s + 1.61·6-s + 2·7-s + 2.23·8-s + 9-s − 3·11-s − 0.618·12-s + 13-s − 3.23·14-s − 4.85·16-s + 4.23·17-s − 1.61·18-s − 6.70·19-s − 2·21-s + 4.85·22-s − 5.38·23-s − 2.23·24-s − 1.61·26-s − 27-s + 1.23·28-s − 3.61·29-s + 8.70·31-s + 3.38·32-s + 3·33-s − 6.85·34-s + ⋯
L(s)  = 1  − 1.14·2-s − 0.577·3-s + 0.309·4-s + 0.660·6-s + 0.755·7-s + 0.790·8-s + 0.333·9-s − 0.904·11-s − 0.178·12-s + 0.277·13-s − 0.864·14-s − 1.21·16-s + 1.02·17-s − 0.381·18-s − 1.53·19-s − 0.436·21-s + 1.03·22-s − 1.12·23-s − 0.456·24-s − 0.317·26-s − 0.192·27-s + 0.233·28-s − 0.671·29-s + 1.56·31-s + 0.597·32-s + 0.522·33-s − 1.17·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1875\)    =    \(3 \cdot 5^{4}\)
Sign: $-1$
Analytic conductor: \(14.9719\)
Root analytic conductor: \(3.86936\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1875,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
good2 \( 1 + 1.61T + 2T^{2} \)
7 \( 1 - 2T + 7T^{2} \)
11 \( 1 + 3T + 11T^{2} \)
13 \( 1 - T + 13T^{2} \)
17 \( 1 - 4.23T + 17T^{2} \)
19 \( 1 + 6.70T + 19T^{2} \)
23 \( 1 + 5.38T + 23T^{2} \)
29 \( 1 + 3.61T + 29T^{2} \)
31 \( 1 - 8.70T + 31T^{2} \)
37 \( 1 - 2T + 37T^{2} \)
41 \( 1 + 9.38T + 41T^{2} \)
43 \( 1 - 7.38T + 43T^{2} \)
47 \( 1 - 4.76T + 47T^{2} \)
53 \( 1 + 11.2T + 53T^{2} \)
59 \( 1 - 3.94T + 59T^{2} \)
61 \( 1 - 8.70T + 61T^{2} \)
67 \( 1 - 13.1T + 67T^{2} \)
71 \( 1 - 10.0T + 71T^{2} \)
73 \( 1 + 15.7T + 73T^{2} \)
79 \( 1 + 9.14T + 79T^{2} \)
83 \( 1 + 9T + 83T^{2} \)
89 \( 1 + 11.1T + 89T^{2} \)
97 \( 1 + 3.85T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.623243488503016890669362104948, −8.166569710710947018397642450711, −7.59955912095787795792560832279, −6.58991687120145699479680631188, −5.65594596680013671733621745766, −4.79664998334316709565876199899, −3.99519401965184691281326075170, −2.35690279268179068067664243479, −1.31547412610837567590861068193, 0, 1.31547412610837567590861068193, 2.35690279268179068067664243479, 3.99519401965184691281326075170, 4.79664998334316709565876199899, 5.65594596680013671733621745766, 6.58991687120145699479680631188, 7.59955912095787795792560832279, 8.166569710710947018397642450711, 8.623243488503016890669362104948

Graph of the $Z$-function along the critical line