Properties

Label 2-1875-1.1-c1-0-36
Degree $2$
Conductor $1875$
Sign $1$
Analytic cond. $14.9719$
Root an. cond. $3.86936$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.895·2-s + 3-s − 1.19·4-s − 0.895·6-s + 5.08·7-s + 2.86·8-s + 9-s + 2.64·11-s − 1.19·12-s + 2.13·13-s − 4.55·14-s − 0.167·16-s + 7.75·17-s − 0.895·18-s + 3.08·19-s + 5.08·21-s − 2.36·22-s − 6.14·23-s + 2.86·24-s − 1.90·26-s + 27-s − 6.09·28-s − 4.13·29-s − 2.74·31-s − 5.57·32-s + 2.64·33-s − 6.93·34-s + ⋯
L(s)  = 1  − 0.633·2-s + 0.577·3-s − 0.599·4-s − 0.365·6-s + 1.92·7-s + 1.01·8-s + 0.333·9-s + 0.796·11-s − 0.345·12-s + 0.591·13-s − 1.21·14-s − 0.0419·16-s + 1.87·17-s − 0.211·18-s + 0.708·19-s + 1.11·21-s − 0.504·22-s − 1.28·23-s + 0.584·24-s − 0.374·26-s + 0.192·27-s − 1.15·28-s − 0.767·29-s − 0.492·31-s − 0.985·32-s + 0.460·33-s − 1.19·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1875\)    =    \(3 \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(14.9719\)
Root analytic conductor: \(3.86936\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1875,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.939425617\)
\(L(\frac12)\) \(\approx\) \(1.939425617\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
good2 \( 1 + 0.895T + 2T^{2} \)
7 \( 1 - 5.08T + 7T^{2} \)
11 \( 1 - 2.64T + 11T^{2} \)
13 \( 1 - 2.13T + 13T^{2} \)
17 \( 1 - 7.75T + 17T^{2} \)
19 \( 1 - 3.08T + 19T^{2} \)
23 \( 1 + 6.14T + 23T^{2} \)
29 \( 1 + 4.13T + 29T^{2} \)
31 \( 1 + 2.74T + 31T^{2} \)
37 \( 1 + 0.0157T + 37T^{2} \)
41 \( 1 - 3.72T + 41T^{2} \)
43 \( 1 + 3.81T + 43T^{2} \)
47 \( 1 + 0.897T + 47T^{2} \)
53 \( 1 + 9.26T + 53T^{2} \)
59 \( 1 + 11.0T + 59T^{2} \)
61 \( 1 - 6.38T + 61T^{2} \)
67 \( 1 + 5.54T + 67T^{2} \)
71 \( 1 + 0.0828T + 71T^{2} \)
73 \( 1 + 9.92T + 73T^{2} \)
79 \( 1 - 5.30T + 79T^{2} \)
83 \( 1 - 0.723T + 83T^{2} \)
89 \( 1 + 13.2T + 89T^{2} \)
97 \( 1 + 2.22T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.109761148014022756293669365841, −8.424448530129276865303725173229, −7.75411406212177557789578191271, −7.51011154255935939872250904603, −5.89718786427866556198531737915, −5.09668112670700773956308757740, −4.23270339476972563343766660184, −3.47280216121887770054096542325, −1.74311898049595940710649393089, −1.21325389183483508222637168978, 1.21325389183483508222637168978, 1.74311898049595940710649393089, 3.47280216121887770054096542325, 4.23270339476972563343766660184, 5.09668112670700773956308757740, 5.89718786427866556198531737915, 7.51011154255935939872250904603, 7.75411406212177557789578191271, 8.424448530129276865303725173229, 9.109761148014022756293669365841

Graph of the $Z$-function along the critical line