Properties

Label 2-1875-1.1-c1-0-20
Degree $2$
Conductor $1875$
Sign $1$
Analytic cond. $14.9719$
Root an. cond. $3.86936$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.12·2-s + 3-s − 0.740·4-s − 1.12·6-s + 1.11·7-s + 3.07·8-s + 9-s + 3.67·11-s − 0.740·12-s − 4.05·13-s − 1.24·14-s − 1.97·16-s + 2.12·17-s − 1.12·18-s − 4.06·19-s + 1.11·21-s − 4.11·22-s + 6.17·23-s + 3.07·24-s + 4.54·26-s + 27-s − 0.824·28-s − 2.25·29-s + 10.0·31-s − 3.93·32-s + 3.67·33-s − 2.38·34-s + ⋯
L(s)  = 1  − 0.793·2-s + 0.577·3-s − 0.370·4-s − 0.458·6-s + 0.420·7-s + 1.08·8-s + 0.333·9-s + 1.10·11-s − 0.213·12-s − 1.12·13-s − 0.334·14-s − 0.492·16-s + 0.514·17-s − 0.264·18-s − 0.931·19-s + 0.243·21-s − 0.878·22-s + 1.28·23-s + 0.627·24-s + 0.891·26-s + 0.192·27-s − 0.155·28-s − 0.419·29-s + 1.80·31-s − 0.696·32-s + 0.638·33-s − 0.408·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1875\)    =    \(3 \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(14.9719\)
Root analytic conductor: \(3.86936\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1875,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.359553010\)
\(L(\frac12)\) \(\approx\) \(1.359553010\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
good2 \( 1 + 1.12T + 2T^{2} \)
7 \( 1 - 1.11T + 7T^{2} \)
11 \( 1 - 3.67T + 11T^{2} \)
13 \( 1 + 4.05T + 13T^{2} \)
17 \( 1 - 2.12T + 17T^{2} \)
19 \( 1 + 4.06T + 19T^{2} \)
23 \( 1 - 6.17T + 23T^{2} \)
29 \( 1 + 2.25T + 29T^{2} \)
31 \( 1 - 10.0T + 31T^{2} \)
37 \( 1 - 7.37T + 37T^{2} \)
41 \( 1 + 7.47T + 41T^{2} \)
43 \( 1 - 9.24T + 43T^{2} \)
47 \( 1 + 3.12T + 47T^{2} \)
53 \( 1 + 3.50T + 53T^{2} \)
59 \( 1 + 6.59T + 59T^{2} \)
61 \( 1 + 9.10T + 61T^{2} \)
67 \( 1 - 2.62T + 67T^{2} \)
71 \( 1 - 0.660T + 71T^{2} \)
73 \( 1 - 7.47T + 73T^{2} \)
79 \( 1 - 8.53T + 79T^{2} \)
83 \( 1 - 12.2T + 83T^{2} \)
89 \( 1 + 15.2T + 89T^{2} \)
97 \( 1 - 13.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.317496466483100998466286388742, −8.480472240547853023398991941350, −7.890133502046111237129512442470, −7.15547093356250528323766880126, −6.26097941179739414795313788090, −4.84035549041700819034464343803, −4.44071315638205817433866103979, −3.24397678861649761029938054500, −2.01194103234678130750228730253, −0.913290204547767087296950666723, 0.913290204547767087296950666723, 2.01194103234678130750228730253, 3.24397678861649761029938054500, 4.44071315638205817433866103979, 4.84035549041700819034464343803, 6.26097941179739414795313788090, 7.15547093356250528323766880126, 7.890133502046111237129512442470, 8.480472240547853023398991941350, 9.317496466483100998466286388742

Graph of the $Z$-function along the critical line