Properties

Label 2-1875-1.1-c1-0-17
Degree $2$
Conductor $1875$
Sign $1$
Analytic cond. $14.9719$
Root an. cond. $3.86936$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s + 6-s − 4.47·7-s − 3·8-s + 9-s − 1.23·11-s − 12-s + 5.61·13-s − 4.47·14-s − 16-s + 3.85·17-s + 18-s + 1.23·19-s − 4.47·21-s − 1.23·22-s + 4.47·23-s − 3·24-s + 5.61·26-s + 27-s + 4.47·28-s + 6.61·29-s + 2.76·31-s + 5·32-s − 1.23·33-s + 3.85·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 0.5·4-s + 0.408·6-s − 1.69·7-s − 1.06·8-s + 0.333·9-s − 0.372·11-s − 0.288·12-s + 1.55·13-s − 1.19·14-s − 0.250·16-s + 0.934·17-s + 0.235·18-s + 0.283·19-s − 0.975·21-s − 0.263·22-s + 0.932·23-s − 0.612·24-s + 1.10·26-s + 0.192·27-s + 0.845·28-s + 1.22·29-s + 0.496·31-s + 0.883·32-s − 0.215·33-s + 0.660·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1875\)    =    \(3 \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(14.9719\)
Root analytic conductor: \(3.86936\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1875,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.158643311\)
\(L(\frac12)\) \(\approx\) \(2.158643311\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
good2 \( 1 - T + 2T^{2} \)
7 \( 1 + 4.47T + 7T^{2} \)
11 \( 1 + 1.23T + 11T^{2} \)
13 \( 1 - 5.61T + 13T^{2} \)
17 \( 1 - 3.85T + 17T^{2} \)
19 \( 1 - 1.23T + 19T^{2} \)
23 \( 1 - 4.47T + 23T^{2} \)
29 \( 1 - 6.61T + 29T^{2} \)
31 \( 1 - 2.76T + 31T^{2} \)
37 \( 1 + 3.09T + 37T^{2} \)
41 \( 1 + 3.61T + 41T^{2} \)
43 \( 1 - 7.70T + 43T^{2} \)
47 \( 1 + 0.763T + 47T^{2} \)
53 \( 1 - 3.61T + 53T^{2} \)
59 \( 1 + 4T + 59T^{2} \)
61 \( 1 - 1.61T + 61T^{2} \)
67 \( 1 - 0.763T + 67T^{2} \)
71 \( 1 + 5.23T + 71T^{2} \)
73 \( 1 + 8.09T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 - 12.4T + 83T^{2} \)
89 \( 1 - 5.38T + 89T^{2} \)
97 \( 1 - 2.14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.058052298791271090132899876655, −8.717917507663199580099875647359, −7.67936052246176006397150435575, −6.58509042088450208041408405114, −6.05761204268223850290119130945, −5.16098011382932892381786557334, −4.03927744598188054867435992876, −3.31996544183404014002537374828, −2.86783374174408485044327812798, −0.886968208092717484353992052130, 0.886968208092717484353992052130, 2.86783374174408485044327812798, 3.31996544183404014002537374828, 4.03927744598188054867435992876, 5.16098011382932892381786557334, 6.05761204268223850290119130945, 6.58509042088450208041408405114, 7.67936052246176006397150435575, 8.717917507663199580099875647359, 9.058052298791271090132899876655

Graph of the $Z$-function along the critical line