Properties

Label 2-187200-1.1-c1-0-112
Degree $2$
Conductor $187200$
Sign $1$
Analytic cond. $1494.79$
Root an. cond. $38.6626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 4·11-s − 13-s + 4·17-s − 7·19-s − 4·23-s + 5·29-s + 4·31-s − 9·37-s + 5·41-s + 10·43-s − 3·47-s + 9·49-s + 9·53-s − 6·59-s − 4·61-s + 7·67-s + 15·71-s + 12·73-s − 16·77-s + 7·79-s + 6·83-s − 14·89-s + 4·91-s − 16·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 1.51·7-s + 1.20·11-s − 0.277·13-s + 0.970·17-s − 1.60·19-s − 0.834·23-s + 0.928·29-s + 0.718·31-s − 1.47·37-s + 0.780·41-s + 1.52·43-s − 0.437·47-s + 9/7·49-s + 1.23·53-s − 0.781·59-s − 0.512·61-s + 0.855·67-s + 1.78·71-s + 1.40·73-s − 1.82·77-s + 0.787·79-s + 0.658·83-s − 1.48·89-s + 0.419·91-s − 1.62·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 187200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(187200\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1494.79\)
Root analytic conductor: \(38.6626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 187200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.976774442\)
\(L(\frac12)\) \(\approx\) \(1.976774442\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 + 7 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 5 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 9 T + p T^{2} \)
41 \( 1 - 5 T + p T^{2} \)
43 \( 1 - 10 T + p T^{2} \)
47 \( 1 + 3 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 - 7 T + p T^{2} \)
71 \( 1 - 15 T + p T^{2} \)
73 \( 1 - 12 T + p T^{2} \)
79 \( 1 - 7 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 + 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.02449820123573, −12.41922816136225, −12.28923646687510, −12.06615835473791, −11.10480912537983, −10.80583429891926, −10.09742414875132, −9.901386576602594, −9.351029504183199, −8.979182251051621, −8.312304858051716, −8.007961563203848, −7.134142714360809, −6.767007412252319, −6.399004577034397, −5.941297626815088, −5.456296789027598, −4.573499913442953, −4.144905685961076, −3.621440817957012, −3.191344318619887, −2.440942636693795, −1.971915061897505, −1.003799884822183, −0.4638439214285162, 0.4638439214285162, 1.003799884822183, 1.971915061897505, 2.440942636693795, 3.191344318619887, 3.621440817957012, 4.144905685961076, 4.573499913442953, 5.456296789027598, 5.941297626815088, 6.399004577034397, 6.767007412252319, 7.134142714360809, 8.007961563203848, 8.312304858051716, 8.979182251051621, 9.351029504183199, 9.901386576602594, 10.09742414875132, 10.80583429891926, 11.10480912537983, 12.06615835473791, 12.28923646687510, 12.41922816136225, 13.02449820123573

Graph of the $Z$-function along the critical line