L(s) = 1 | − 2·7-s + 13-s + 2·19-s + 25-s + 2·31-s + 3·49-s − 2·61-s − 2·67-s − 2·91-s + ⋯ |
L(s) = 1 | − 2·7-s + 13-s + 2·19-s + 25-s + 2·31-s + 3·49-s − 2·61-s − 2·67-s − 2·91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9981779687\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9981779687\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 - T \) |
good | 5 | \( ( 1 - T )( 1 + T ) \) |
| 7 | \( ( 1 + T )^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( ( 1 - T )^{2} \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( ( 1 - T )^{2} \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( ( 1 + T )^{2} \) |
| 67 | \( ( 1 + T )^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.405699855998794196490633020512, −8.865265241627971360987530370065, −7.79109794351366990142282425789, −6.91036367986177424592172409604, −6.29036216409153054952156669611, −5.60867477635528805020784324723, −4.40835532617469295766436986151, −3.24388696821516910428269757435, −2.95909812871274582697050335839, −1.04003023657980847128158712422,
1.04003023657980847128158712422, 2.95909812871274582697050335839, 3.24388696821516910428269757435, 4.40835532617469295766436986151, 5.60867477635528805020784324723, 6.29036216409153054952156669611, 6.91036367986177424592172409604, 7.79109794351366990142282425789, 8.865265241627971360987530370065, 9.405699855998794196490633020512