L(s) = 1 | + (−1 + i)5-s + (2 − 3i)13-s − 2i·17-s + 3i·25-s + 4·29-s + (−7 − 7i)37-s + (9 − 9i)41-s + 7i·49-s + 14·53-s + 10·61-s + (1 + 5i)65-s + (5 + 5i)73-s + (2 + 2i)85-s + (13 + 13i)89-s + (13 − 13i)97-s + ⋯ |
L(s) = 1 | + (−0.447 + 0.447i)5-s + (0.554 − 0.832i)13-s − 0.485i·17-s + 0.600i·25-s + 0.742·29-s + (−1.15 − 1.15i)37-s + (1.40 − 1.40i)41-s + i·49-s + 1.92·53-s + 1.28·61-s + (0.124 + 0.620i)65-s + (0.585 + 0.585i)73-s + (0.216 + 0.216i)85-s + (1.37 + 1.37i)89-s + (1.31 − 1.31i)97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 + 0.289i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.957 + 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.553651725\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.553651725\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-2 + 3i)T \) |
good | 5 | \( 1 + (1 - i)T - 5iT^{2} \) |
| 7 | \( 1 - 7iT^{2} \) |
| 11 | \( 1 - 11iT^{2} \) |
| 17 | \( 1 + 2iT - 17T^{2} \) |
| 19 | \( 1 + 19iT^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 - 4T + 29T^{2} \) |
| 31 | \( 1 + 31iT^{2} \) |
| 37 | \( 1 + (7 + 7i)T + 37iT^{2} \) |
| 41 | \( 1 + (-9 + 9i)T - 41iT^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 - 47iT^{2} \) |
| 53 | \( 1 - 14T + 53T^{2} \) |
| 59 | \( 1 - 59iT^{2} \) |
| 61 | \( 1 - 10T + 61T^{2} \) |
| 67 | \( 1 + 67iT^{2} \) |
| 71 | \( 1 + 71iT^{2} \) |
| 73 | \( 1 + (-5 - 5i)T + 73iT^{2} \) |
| 79 | \( 1 - 79T^{2} \) |
| 83 | \( 1 + 83iT^{2} \) |
| 89 | \( 1 + (-13 - 13i)T + 89iT^{2} \) |
| 97 | \( 1 + (-13 + 13i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.085089984727315755970237894229, −8.443559099348125638355445623057, −7.49070219768878232430988026684, −7.03217634645471387812432730118, −5.92410276583179175432631810681, −5.25608411242825586970846982605, −4.07618261650601845342646550122, −3.33485695169846444418350429795, −2.32253219099474182216174591868, −0.75194921336979352191172044724,
0.982191842588274532153576588693, 2.24417931112986669965195765064, 3.52936919079648674560508386667, 4.31092810547757669399368250176, 5.09767789156791658935759494020, 6.20526518342110784171430923950, 6.80371590250706096906197427978, 7.86515411811517607008775054986, 8.497083101532657821282064117664, 9.098562901043967017202881254052