L(s) = 1 | − 3·5-s + (1 + 1.73i)7-s + (−3 + 5.19i)11-s + (−3.5 − 0.866i)13-s + (−1.5 − 2.59i)17-s + (1 + 1.73i)19-s + (3 − 5.19i)23-s + 4·25-s + (1.5 − 2.59i)29-s + 4·31-s + (−3 − 5.19i)35-s + (3.5 − 6.06i)37-s + (−1.5 + 2.59i)41-s + (−5 − 8.66i)43-s + 6·47-s + ⋯ |
L(s) = 1 | − 1.34·5-s + (0.377 + 0.654i)7-s + (−0.904 + 1.56i)11-s + (−0.970 − 0.240i)13-s + (−0.363 − 0.630i)17-s + (0.229 + 0.397i)19-s + (0.625 − 1.08i)23-s + 0.800·25-s + (0.278 − 0.482i)29-s + 0.718·31-s + (−0.507 − 0.878i)35-s + (0.575 − 0.996i)37-s + (−0.234 + 0.405i)41-s + (−0.762 − 1.32i)43-s + 0.875·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0128 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0128 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5443233238\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5443233238\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (3.5 + 0.866i)T \) |
good | 5 | \( 1 + 3T + 5T^{2} \) |
| 7 | \( 1 + (-1 - 1.73i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (3 - 5.19i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.5 + 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1 - 1.73i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3 + 5.19i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.5 + 2.59i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 4T + 31T^{2} \) |
| 37 | \( 1 + (-3.5 + 6.06i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.5 - 2.59i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5 + 8.66i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 6T + 47T^{2} \) |
| 53 | \( 1 + 3T + 53T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.5 - 6.06i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5 - 8.66i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3 + 5.19i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 13T + 73T^{2} \) |
| 79 | \( 1 - 4T + 79T^{2} \) |
| 83 | \( 1 + 6T + 83T^{2} \) |
| 89 | \( 1 + (-9 + 15.5i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (7 + 12.1i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.874592874455558164594958575140, −8.191755821037741596250100549978, −7.35652493106599782768595313129, −7.10868657182219595592998804249, −5.65217151097424677364641782686, −4.71243225025960076545127876809, −4.36713458918219817682409194842, −2.92216233714403219789188184096, −2.17837658986567269770970508460, −0.23803425182367895221211663084,
1.02212374980078835570853305787, 2.80270353562437943012375696188, 3.54488411526823753165145655514, 4.51031262675736679871533563401, 5.19330429304403538191027186399, 6.34567574085954315672025945844, 7.29885097206527852144155316939, 7.895171759770045984324697481652, 8.376914799379497546863105009751, 9.325773783104568862667596102923