Properties

Label 2-1872-13.12-c1-0-17
Degree $2$
Conductor $1872$
Sign $0.832 + 0.554i$
Analytic cond. $14.9479$
Root an. cond. $3.86626$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2i·5-s + 2i·7-s + (−3 − 2i)13-s + 2·17-s + 6i·19-s + 4·23-s + 25-s + 10·29-s − 10i·31-s + 4·35-s + 8i·37-s − 10i·41-s − 4·43-s − 12i·47-s + 3·49-s + ⋯
L(s)  = 1  − 0.894i·5-s + 0.755i·7-s + (−0.832 − 0.554i)13-s + 0.485·17-s + 1.37i·19-s + 0.834·23-s + 0.200·25-s + 1.85·29-s − 1.79i·31-s + 0.676·35-s + 1.31i·37-s − 1.56i·41-s − 0.609·43-s − 1.75i·47-s + 0.428·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 + 0.554i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.832 + 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $0.832 + 0.554i$
Analytic conductor: \(14.9479\)
Root analytic conductor: \(3.86626\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1872} (1585, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :1/2),\ 0.832 + 0.554i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.688611181\)
\(L(\frac12)\) \(\approx\) \(1.688611181\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + (3 + 2i)T \)
good5 \( 1 + 2iT - 5T^{2} \)
7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 - 11T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 - 6iT - 19T^{2} \)
23 \( 1 - 4T + 23T^{2} \)
29 \( 1 - 10T + 29T^{2} \)
31 \( 1 + 10iT - 31T^{2} \)
37 \( 1 - 8iT - 37T^{2} \)
41 \( 1 + 10iT - 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 + 12iT - 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 - 4iT - 59T^{2} \)
61 \( 1 - 2T + 61T^{2} \)
67 \( 1 - 2iT - 67T^{2} \)
71 \( 1 - 71T^{2} \)
73 \( 1 + 4iT - 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 4iT - 83T^{2} \)
89 \( 1 - 6iT - 89T^{2} \)
97 \( 1 + 12iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.007385919229748411351164434573, −8.447263688715366358683879441083, −7.77692294713283931596655897320, −6.78018313711248701755063961250, −5.70819126897290076721028271593, −5.22682445916237200712828707122, −4.33172448019589934184046759446, −3.16537262543540868017865575838, −2.13198175037760075101119464600, −0.794807746838400400493292765771, 1.02058498317847053628252469040, 2.59868470270459072400301490415, 3.21863537722915619675050225897, 4.48232571967047506210393698411, 5.06156645094311968166905732233, 6.45375414631718386441229477036, 6.93719216554941773200738777003, 7.48497016770577177653000297543, 8.553501971817179384632095504635, 9.361995907518608237787438983653

Graph of the $Z$-function along the critical line