Properties

Label 2-1872-1.1-c3-0-62
Degree $2$
Conductor $1872$
Sign $-1$
Analytic cond. $110.451$
Root an. cond. $10.5095$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 17·5-s + 35·7-s + 2·11-s + 13·13-s + 19·17-s − 94·19-s − 72·23-s + 164·25-s − 246·29-s + 100·31-s − 595·35-s − 11·37-s + 280·41-s − 241·43-s + 137·47-s + 882·49-s + 232·53-s − 34·55-s − 386·59-s + 64·61-s − 221·65-s + 670·67-s + 55·71-s − 838·73-s + 70·77-s − 1.01e3·79-s + 420·83-s + ⋯
L(s)  = 1  − 1.52·5-s + 1.88·7-s + 0.0548·11-s + 0.277·13-s + 0.271·17-s − 1.13·19-s − 0.652·23-s + 1.31·25-s − 1.57·29-s + 0.579·31-s − 2.87·35-s − 0.0488·37-s + 1.06·41-s − 0.854·43-s + 0.425·47-s + 18/7·49-s + 0.601·53-s − 0.0833·55-s − 0.851·59-s + 0.134·61-s − 0.421·65-s + 1.22·67-s + 0.0919·71-s − 1.34·73-s + 0.103·77-s − 1.44·79-s + 0.555·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(110.451\)
Root analytic conductor: \(10.5095\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1872,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - p T \)
good5 \( 1 + 17 T + p^{3} T^{2} \)
7 \( 1 - 5 p T + p^{3} T^{2} \)
11 \( 1 - 2 T + p^{3} T^{2} \)
17 \( 1 - 19 T + p^{3} T^{2} \)
19 \( 1 + 94 T + p^{3} T^{2} \)
23 \( 1 + 72 T + p^{3} T^{2} \)
29 \( 1 + 246 T + p^{3} T^{2} \)
31 \( 1 - 100 T + p^{3} T^{2} \)
37 \( 1 + 11 T + p^{3} T^{2} \)
41 \( 1 - 280 T + p^{3} T^{2} \)
43 \( 1 + 241 T + p^{3} T^{2} \)
47 \( 1 - 137 T + p^{3} T^{2} \)
53 \( 1 - 232 T + p^{3} T^{2} \)
59 \( 1 + 386 T + p^{3} T^{2} \)
61 \( 1 - 64 T + p^{3} T^{2} \)
67 \( 1 - 10 p T + p^{3} T^{2} \)
71 \( 1 - 55 T + p^{3} T^{2} \)
73 \( 1 + 838 T + p^{3} T^{2} \)
79 \( 1 + 1016 T + p^{3} T^{2} \)
83 \( 1 - 420 T + p^{3} T^{2} \)
89 \( 1 - 934 T + p^{3} T^{2} \)
97 \( 1 + 1154 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.355522368061648951025045534180, −7.75910669480615604202353314592, −7.26841828752314731384713815953, −6.02109663669785878417350379345, −5.01771348357223877325515643800, −4.26919348557776827373593119672, −3.74395799217437517923055615446, −2.29275526584971034223335309243, −1.24766391959122719253345319765, 0, 1.24766391959122719253345319765, 2.29275526584971034223335309243, 3.74395799217437517923055615446, 4.26919348557776827373593119672, 5.01771348357223877325515643800, 6.02109663669785878417350379345, 7.26841828752314731384713815953, 7.75910669480615604202353314592, 8.355522368061648951025045534180

Graph of the $Z$-function along the critical line