Properties

Label 2-1872-1.1-c3-0-52
Degree $2$
Conductor $1872$
Sign $-1$
Analytic cond. $110.451$
Root an. cond. $10.5095$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 19·5-s + 3·7-s − 2·11-s − 13·13-s − 77·17-s + 58·19-s + 76·23-s + 236·25-s + 6·29-s + 292·31-s − 57·35-s + 207·37-s − 240·41-s + 317·43-s − 375·47-s − 334·49-s + 692·53-s + 38·55-s + 214·59-s − 488·61-s + 247·65-s − 782·67-s − 1.05e3·71-s + 1.17e3·73-s − 6·77-s − 892·79-s + 704·83-s + ⋯
L(s)  = 1  − 1.69·5-s + 0.161·7-s − 0.0548·11-s − 0.277·13-s − 1.09·17-s + 0.700·19-s + 0.689·23-s + 1.88·25-s + 0.0384·29-s + 1.69·31-s − 0.275·35-s + 0.919·37-s − 0.914·41-s + 1.12·43-s − 1.16·47-s − 0.973·49-s + 1.79·53-s + 0.0931·55-s + 0.472·59-s − 1.02·61-s + 0.471·65-s − 1.42·67-s − 1.76·71-s + 1.88·73-s − 0.00888·77-s − 1.27·79-s + 0.931·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(110.451\)
Root analytic conductor: \(10.5095\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1872,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + p T \)
good5 \( 1 + 19 T + p^{3} T^{2} \)
7 \( 1 - 3 T + p^{3} T^{2} \)
11 \( 1 + 2 T + p^{3} T^{2} \)
17 \( 1 + 77 T + p^{3} T^{2} \)
19 \( 1 - 58 T + p^{3} T^{2} \)
23 \( 1 - 76 T + p^{3} T^{2} \)
29 \( 1 - 6 T + p^{3} T^{2} \)
31 \( 1 - 292 T + p^{3} T^{2} \)
37 \( 1 - 207 T + p^{3} T^{2} \)
41 \( 1 + 240 T + p^{3} T^{2} \)
43 \( 1 - 317 T + p^{3} T^{2} \)
47 \( 1 + 375 T + p^{3} T^{2} \)
53 \( 1 - 692 T + p^{3} T^{2} \)
59 \( 1 - 214 T + p^{3} T^{2} \)
61 \( 1 + 8 p T + p^{3} T^{2} \)
67 \( 1 + 782 T + p^{3} T^{2} \)
71 \( 1 + 1057 T + p^{3} T^{2} \)
73 \( 1 - 1174 T + p^{3} T^{2} \)
79 \( 1 + 892 T + p^{3} T^{2} \)
83 \( 1 - 704 T + p^{3} T^{2} \)
89 \( 1 + 6 T + p^{3} T^{2} \)
97 \( 1 - 830 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.406427243031185353604584066173, −7.68735335528294431719381048601, −7.10056189758865175860079837360, −6.23112227756067762475575530810, −4.88326018423582523984022150172, −4.43903349299717433789553104252, −3.46177645019298065928045377141, −2.60504169046124223934392300468, −1.02800526461543736746214770921, 0, 1.02800526461543736746214770921, 2.60504169046124223934392300468, 3.46177645019298065928045377141, 4.43903349299717433789553104252, 4.88326018423582523984022150172, 6.23112227756067762475575530810, 7.10056189758865175860079837360, 7.68735335528294431719381048601, 8.406427243031185353604584066173

Graph of the $Z$-function along the critical line