Properties

Label 2-1872-1.1-c3-0-37
Degree $2$
Conductor $1872$
Sign $-1$
Analytic cond. $110.451$
Root an. cond. $10.5095$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 19.1·5-s − 35.1·7-s + 26·11-s − 13·13-s + 36.2·17-s + 95.5·19-s − 161.·23-s + 240.·25-s + 91.3·29-s + 266.·31-s + 671.·35-s − 149.·37-s + 77.8·41-s − 183.·43-s − 60.6·47-s + 890.·49-s − 281.·53-s − 496.·55-s − 542.·59-s + 65.0·61-s + 248.·65-s + 1.03e3·67-s + 1.04e3·71-s + 483.·73-s − 912.·77-s + 1.33e3·79-s + 812.·83-s + ⋯
L(s)  = 1  − 1.70·5-s − 1.89·7-s + 0.712·11-s − 0.277·13-s + 0.516·17-s + 1.15·19-s − 1.46·23-s + 1.92·25-s + 0.585·29-s + 1.54·31-s + 3.24·35-s − 0.664·37-s + 0.296·41-s − 0.651·43-s − 0.188·47-s + 2.59·49-s − 0.729·53-s − 1.21·55-s − 1.19·59-s + 0.136·61-s + 0.474·65-s + 1.88·67-s + 1.74·71-s + 0.774·73-s − 1.35·77-s + 1.90·79-s + 1.07·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(110.451\)
Root analytic conductor: \(10.5095\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1872,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + 13T \)
good5 \( 1 + 19.1T + 125T^{2} \)
7 \( 1 + 35.1T + 343T^{2} \)
11 \( 1 - 26T + 1.33e3T^{2} \)
17 \( 1 - 36.2T + 4.91e3T^{2} \)
19 \( 1 - 95.5T + 6.85e3T^{2} \)
23 \( 1 + 161.T + 1.21e4T^{2} \)
29 \( 1 - 91.3T + 2.43e4T^{2} \)
31 \( 1 - 266.T + 2.97e4T^{2} \)
37 \( 1 + 149.T + 5.06e4T^{2} \)
41 \( 1 - 77.8T + 6.89e4T^{2} \)
43 \( 1 + 183.T + 7.95e4T^{2} \)
47 \( 1 + 60.6T + 1.03e5T^{2} \)
53 \( 1 + 281.T + 1.48e5T^{2} \)
59 \( 1 + 542.T + 2.05e5T^{2} \)
61 \( 1 - 65.0T + 2.26e5T^{2} \)
67 \( 1 - 1.03e3T + 3.00e5T^{2} \)
71 \( 1 - 1.04e3T + 3.57e5T^{2} \)
73 \( 1 - 483.T + 3.89e5T^{2} \)
79 \( 1 - 1.33e3T + 4.93e5T^{2} \)
83 \( 1 - 812.T + 5.71e5T^{2} \)
89 \( 1 + 936.T + 7.04e5T^{2} \)
97 \( 1 + 954.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.281070193100072734471404005118, −7.78710342068889981386247026438, −6.77124169218390644567232598628, −6.42864839786140833994736941152, −5.16319157197850804973390641030, −3.99440462185048265865660132166, −3.55414415699425161581413133450, −2.78038519231245257871463135579, −0.884414296797356043782937990923, 0, 0.884414296797356043782937990923, 2.78038519231245257871463135579, 3.55414415699425161581413133450, 3.99440462185048265865660132166, 5.16319157197850804973390641030, 6.42864839786140833994736941152, 6.77124169218390644567232598628, 7.78710342068889981386247026438, 8.281070193100072734471404005118

Graph of the $Z$-function along the critical line