Properties

Label 2-1872-1.1-c3-0-20
Degree $2$
Conductor $1872$
Sign $1$
Analytic cond. $110.451$
Root an. cond. $10.5095$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 4·7-s + 2·11-s − 13·13-s + 6·17-s + 36·19-s − 20·23-s − 109·25-s + 14·29-s + 152·31-s + 16·35-s − 258·37-s − 84·41-s + 188·43-s + 254·47-s − 327·49-s − 366·53-s − 8·55-s + 550·59-s − 14·61-s + 52·65-s − 448·67-s + 926·71-s + 254·73-s − 8·77-s − 1.32e3·79-s + 186·83-s + ⋯
L(s)  = 1  − 0.357·5-s − 0.215·7-s + 0.0548·11-s − 0.277·13-s + 0.0856·17-s + 0.434·19-s − 0.181·23-s − 0.871·25-s + 0.0896·29-s + 0.880·31-s + 0.0772·35-s − 1.14·37-s − 0.319·41-s + 0.666·43-s + 0.788·47-s − 0.953·49-s − 0.948·53-s − 0.0196·55-s + 1.21·59-s − 0.0293·61-s + 0.0992·65-s − 0.816·67-s + 1.54·71-s + 0.407·73-s − 0.0118·77-s − 1.89·79-s + 0.245·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(110.451\)
Root analytic conductor: \(10.5095\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.562324554\)
\(L(\frac12)\) \(\approx\) \(1.562324554\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + p T \)
good5 \( 1 + 4 T + p^{3} T^{2} \)
7 \( 1 + 4 T + p^{3} T^{2} \)
11 \( 1 - 2 T + p^{3} T^{2} \)
17 \( 1 - 6 T + p^{3} T^{2} \)
19 \( 1 - 36 T + p^{3} T^{2} \)
23 \( 1 + 20 T + p^{3} T^{2} \)
29 \( 1 - 14 T + p^{3} T^{2} \)
31 \( 1 - 152 T + p^{3} T^{2} \)
37 \( 1 + 258 T + p^{3} T^{2} \)
41 \( 1 + 84 T + p^{3} T^{2} \)
43 \( 1 - 188 T + p^{3} T^{2} \)
47 \( 1 - 254 T + p^{3} T^{2} \)
53 \( 1 + 366 T + p^{3} T^{2} \)
59 \( 1 - 550 T + p^{3} T^{2} \)
61 \( 1 + 14 T + p^{3} T^{2} \)
67 \( 1 + 448 T + p^{3} T^{2} \)
71 \( 1 - 926 T + p^{3} T^{2} \)
73 \( 1 - 254 T + p^{3} T^{2} \)
79 \( 1 + 1328 T + p^{3} T^{2} \)
83 \( 1 - 186 T + p^{3} T^{2} \)
89 \( 1 - 336 T + p^{3} T^{2} \)
97 \( 1 - 614 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.841614465449774591097367794189, −8.050558688452731367317300596239, −7.35595793386759923570433561316, −6.53270122199644278179487352995, −5.66856620484917032854878358407, −4.77233380532924688600863991681, −3.85850598492027860212521412144, −2.99744905823897510690205128855, −1.86453963850477286953316853525, −0.57581623357293209519882570977, 0.57581623357293209519882570977, 1.86453963850477286953316853525, 2.99744905823897510690205128855, 3.85850598492027860212521412144, 4.77233380532924688600863991681, 5.66856620484917032854878358407, 6.53270122199644278179487352995, 7.35595793386759923570433561316, 8.050558688452731367317300596239, 8.841614465449774591097367794189

Graph of the $Z$-function along the critical line