Properties

Label 2-1872-1.1-c3-0-2
Degree $2$
Conductor $1872$
Sign $1$
Analytic cond. $110.451$
Root an. cond. $10.5095$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 11·5-s − 19·7-s − 38·11-s − 13·13-s + 51·17-s − 90·19-s − 52·23-s − 4·25-s + 190·29-s − 292·31-s + 209·35-s − 441·37-s − 312·41-s − 373·43-s − 41·47-s + 18·49-s − 468·53-s + 418·55-s + 530·59-s + 592·61-s + 143·65-s + 206·67-s − 863·71-s − 322·73-s + 722·77-s + 460·79-s + 528·83-s + ⋯
L(s)  = 1  − 0.983·5-s − 1.02·7-s − 1.04·11-s − 0.277·13-s + 0.727·17-s − 1.08·19-s − 0.471·23-s − 0.0319·25-s + 1.21·29-s − 1.69·31-s + 1.00·35-s − 1.95·37-s − 1.18·41-s − 1.32·43-s − 0.127·47-s + 0.0524·49-s − 1.21·53-s + 1.02·55-s + 1.16·59-s + 1.24·61-s + 0.272·65-s + 0.375·67-s − 1.44·71-s − 0.516·73-s + 1.06·77-s + 0.655·79-s + 0.698·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(110.451\)
Root analytic conductor: \(10.5095\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.2153743129\)
\(L(\frac12)\) \(\approx\) \(0.2153743129\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + p T \)
good5 \( 1 + 11 T + p^{3} T^{2} \)
7 \( 1 + 19 T + p^{3} T^{2} \)
11 \( 1 + 38 T + p^{3} T^{2} \)
17 \( 1 - 3 p T + p^{3} T^{2} \)
19 \( 1 + 90 T + p^{3} T^{2} \)
23 \( 1 + 52 T + p^{3} T^{2} \)
29 \( 1 - 190 T + p^{3} T^{2} \)
31 \( 1 + 292 T + p^{3} T^{2} \)
37 \( 1 + 441 T + p^{3} T^{2} \)
41 \( 1 + 312 T + p^{3} T^{2} \)
43 \( 1 + 373 T + p^{3} T^{2} \)
47 \( 1 + 41 T + p^{3} T^{2} \)
53 \( 1 + 468 T + p^{3} T^{2} \)
59 \( 1 - 530 T + p^{3} T^{2} \)
61 \( 1 - 592 T + p^{3} T^{2} \)
67 \( 1 - 206 T + p^{3} T^{2} \)
71 \( 1 + 863 T + p^{3} T^{2} \)
73 \( 1 + 322 T + p^{3} T^{2} \)
79 \( 1 - 460 T + p^{3} T^{2} \)
83 \( 1 - 528 T + p^{3} T^{2} \)
89 \( 1 + 870 T + p^{3} T^{2} \)
97 \( 1 + 346 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.633084731560634841762541678578, −8.185821482711142429506878648218, −7.25946498792853728537714450575, −6.66264714842955144518649957343, −5.61833531076953338593506480530, −4.79612357784681838862234912461, −3.68817818207649736366286025180, −3.15994272406812893275633752816, −1.93390172542120661408955576717, −0.20342271699193499527119311717, 0.20342271699193499527119311717, 1.93390172542120661408955576717, 3.15994272406812893275633752816, 3.68817818207649736366286025180, 4.79612357784681838862234912461, 5.61833531076953338593506480530, 6.66264714842955144518649957343, 7.25946498792853728537714450575, 8.185821482711142429506878648218, 8.633084731560634841762541678578

Graph of the $Z$-function along the critical line