L(s) = 1 | + 5-s − 7-s − 2·11-s − 13-s + 3·17-s − 6·19-s − 4·23-s − 4·25-s − 2·29-s − 4·31-s − 35-s + 3·37-s + 5·43-s + 13·47-s − 6·49-s − 12·53-s − 2·55-s − 10·59-s − 8·61-s − 65-s + 2·67-s − 5·71-s − 10·73-s + 2·77-s + 4·79-s + 3·85-s − 6·89-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 0.377·7-s − 0.603·11-s − 0.277·13-s + 0.727·17-s − 1.37·19-s − 0.834·23-s − 4/5·25-s − 0.371·29-s − 0.718·31-s − 0.169·35-s + 0.493·37-s + 0.762·43-s + 1.89·47-s − 6/7·49-s − 1.64·53-s − 0.269·55-s − 1.30·59-s − 1.02·61-s − 0.124·65-s + 0.244·67-s − 0.593·71-s − 1.17·73-s + 0.227·77-s + 0.450·79-s + 0.325·85-s − 0.635·89-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1872s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+T |
good | 5 | 1−T+pT2 |
| 7 | 1+T+pT2 |
| 11 | 1+2T+pT2 |
| 17 | 1−3T+pT2 |
| 19 | 1+6T+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1+2T+pT2 |
| 31 | 1+4T+pT2 |
| 37 | 1−3T+pT2 |
| 41 | 1+pT2 |
| 43 | 1−5T+pT2 |
| 47 | 1−13T+pT2 |
| 53 | 1+12T+pT2 |
| 59 | 1+10T+pT2 |
| 61 | 1+8T+pT2 |
| 67 | 1−2T+pT2 |
| 71 | 1+5T+pT2 |
| 73 | 1+10T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1−14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.963928209525859216279788816156, −7.931818475756913627713932784539, −7.42085241738992224550819026024, −6.19695969612857050602479487947, −5.84229781714116440214520488100, −4.73920502052987077827176335423, −3.82010897415061793912288152862, −2.71625515373288996093576035666, −1.77354291627119599659363661895, 0,
1.77354291627119599659363661895, 2.71625515373288996093576035666, 3.82010897415061793912288152862, 4.73920502052987077827176335423, 5.84229781714116440214520488100, 6.19695969612857050602479487947, 7.42085241738992224550819026024, 7.931818475756913627713932784539, 8.963928209525859216279788816156