Properties

Label 2-1872-1.1-c1-0-26
Degree $2$
Conductor $1872$
Sign $-1$
Analytic cond. $14.9479$
Root an. cond. $3.86626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 7-s − 2·11-s − 13-s + 3·17-s − 6·19-s − 4·23-s − 4·25-s − 2·29-s − 4·31-s − 35-s + 3·37-s + 5·43-s + 13·47-s − 6·49-s − 12·53-s − 2·55-s − 10·59-s − 8·61-s − 65-s + 2·67-s − 5·71-s − 10·73-s + 2·77-s + 4·79-s + 3·85-s − 6·89-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.377·7-s − 0.603·11-s − 0.277·13-s + 0.727·17-s − 1.37·19-s − 0.834·23-s − 4/5·25-s − 0.371·29-s − 0.718·31-s − 0.169·35-s + 0.493·37-s + 0.762·43-s + 1.89·47-s − 6/7·49-s − 1.64·53-s − 0.269·55-s − 1.30·59-s − 1.02·61-s − 0.124·65-s + 0.244·67-s − 0.593·71-s − 1.17·73-s + 0.227·77-s + 0.450·79-s + 0.325·85-s − 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(14.9479\)
Root analytic conductor: \(3.86626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1872,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 3 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - 5 T + p T^{2} \)
47 \( 1 - 13 T + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 + 10 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 + 5 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.963928209525859216279788816156, −7.931818475756913627713932784539, −7.42085241738992224550819026024, −6.19695969612857050602479487947, −5.84229781714116440214520488100, −4.73920502052987077827176335423, −3.82010897415061793912288152862, −2.71625515373288996093576035666, −1.77354291627119599659363661895, 0, 1.77354291627119599659363661895, 2.71625515373288996093576035666, 3.82010897415061793912288152862, 4.73920502052987077827176335423, 5.84229781714116440214520488100, 6.19695969612857050602479487947, 7.42085241738992224550819026024, 7.931818475756913627713932784539, 8.963928209525859216279788816156

Graph of the $Z$-function along the critical line