Properties

Label 2-1872-1.1-c1-0-2
Degree $2$
Conductor $1872$
Sign $1$
Analytic cond. $14.9479$
Root an. cond. $3.86626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 2·11-s − 13-s − 2·17-s − 8·19-s + 4·23-s + 11·25-s + 6·29-s + 4·31-s + 6·37-s + 12·41-s − 4·43-s − 6·47-s − 7·49-s + 2·53-s + 8·55-s − 14·59-s + 10·61-s + 4·65-s + 4·67-s + 2·71-s − 2·73-s + 8·79-s + 14·83-s + 8·85-s + 32·95-s − 10·97-s + ⋯
L(s)  = 1  − 1.78·5-s − 0.603·11-s − 0.277·13-s − 0.485·17-s − 1.83·19-s + 0.834·23-s + 11/5·25-s + 1.11·29-s + 0.718·31-s + 0.986·37-s + 1.87·41-s − 0.609·43-s − 0.875·47-s − 49-s + 0.274·53-s + 1.07·55-s − 1.82·59-s + 1.28·61-s + 0.496·65-s + 0.488·67-s + 0.237·71-s − 0.234·73-s + 0.900·79-s + 1.53·83-s + 0.867·85-s + 3.28·95-s − 1.01·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(14.9479\)
Root analytic conductor: \(3.86626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8323398102\)
\(L(\frac12)\) \(\approx\) \(0.8323398102\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 4 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 - 12 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 14 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 2 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 14 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.006771409809014628468863978608, −8.251129103882234148491377458104, −7.86054071930096752093791369873, −6.93210531622838702609773257966, −6.24555617445133637550942476068, −4.72960594562341554496410559219, −4.46843413129605389307691420120, −3.37653352192825903166986925682, −2.44575355061988739951957175223, −0.59372633464493589187309274913, 0.59372633464493589187309274913, 2.44575355061988739951957175223, 3.37653352192825903166986925682, 4.46843413129605389307691420120, 4.72960594562341554496410559219, 6.24555617445133637550942476068, 6.93210531622838702609773257966, 7.86054071930096752093791369873, 8.251129103882234148491377458104, 9.006771409809014628468863978608

Graph of the $Z$-function along the critical line