Properties

Label 2-1872-1.1-c1-0-16
Degree $2$
Conductor $1872$
Sign $1$
Analytic cond. $14.9479$
Root an. cond. $3.86626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s + 4·7-s − 2·11-s − 13-s + 6·17-s − 4·19-s + 4·23-s + 11·25-s + 6·29-s − 8·31-s + 16·35-s − 10·37-s + 4·41-s + 4·43-s − 6·47-s + 9·49-s − 6·53-s − 8·55-s − 6·59-s − 6·61-s − 4·65-s + 10·71-s − 2·73-s − 8·77-s − 10·83-s + 24·85-s − 8·89-s + ⋯
L(s)  = 1  + 1.78·5-s + 1.51·7-s − 0.603·11-s − 0.277·13-s + 1.45·17-s − 0.917·19-s + 0.834·23-s + 11/5·25-s + 1.11·29-s − 1.43·31-s + 2.70·35-s − 1.64·37-s + 0.624·41-s + 0.609·43-s − 0.875·47-s + 9/7·49-s − 0.824·53-s − 1.07·55-s − 0.781·59-s − 0.768·61-s − 0.496·65-s + 1.18·71-s − 0.234·73-s − 0.911·77-s − 1.09·83-s + 2.60·85-s − 0.847·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(14.9479\)
Root analytic conductor: \(3.86626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.893318383\)
\(L(\frac12)\) \(\approx\) \(2.893318383\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 4 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 - 10 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 10 T + p T^{2} \)
89 \( 1 + 8 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.236517015935069263593512559649, −8.511713783286943073331410960949, −7.72620902983739830530194611782, −6.83090920971029639184526540146, −5.79542508643660039855358485463, −5.26738993533513128275686270358, −4.64540211102710374344620461150, −3.07082311219214790751277479667, −2.04771532659732672600710243609, −1.35061874417219692087547083371, 1.35061874417219692087547083371, 2.04771532659732672600710243609, 3.07082311219214790751277479667, 4.64540211102710374344620461150, 5.26738993533513128275686270358, 5.79542508643660039855358485463, 6.83090920971029639184526540146, 7.72620902983739830530194611782, 8.511713783286943073331410960949, 9.236517015935069263593512559649

Graph of the $Z$-function along the critical line