Properties

Label 2-1872-1.1-c1-0-0
Degree $2$
Conductor $1872$
Sign $1$
Analytic cond. $14.9479$
Root an. cond. $3.86626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 4·7-s − 4·11-s − 13-s − 8·23-s + 11·25-s + 8·29-s − 4·31-s + 16·35-s + 6·37-s − 12·41-s + 8·43-s − 4·47-s + 9·49-s + 16·55-s + 4·59-s − 2·61-s + 4·65-s + 8·67-s − 4·71-s − 10·73-s + 16·77-s + 4·79-s + 12·83-s + 12·89-s + 4·91-s + 14·97-s + ⋯
L(s)  = 1  − 1.78·5-s − 1.51·7-s − 1.20·11-s − 0.277·13-s − 1.66·23-s + 11/5·25-s + 1.48·29-s − 0.718·31-s + 2.70·35-s + 0.986·37-s − 1.87·41-s + 1.21·43-s − 0.583·47-s + 9/7·49-s + 2.15·55-s + 0.520·59-s − 0.256·61-s + 0.496·65-s + 0.977·67-s − 0.474·71-s − 1.17·73-s + 1.82·77-s + 0.450·79-s + 1.31·83-s + 1.27·89-s + 0.419·91-s + 1.42·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(14.9479\)
Root analytic conductor: \(3.86626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3822763492\)
\(L(\frac12)\) \(\approx\) \(0.3822763492\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 4 T + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 12 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.193654244805756746325292550091, −8.201733704151596185987903064087, −7.79060854775042365605164468705, −6.94787299886291680521490460261, −6.19578640602053014565524878691, −5.05645028216135290095057077475, −4.10665661851761688347162074488, −3.38922081885229144696621278738, −2.58928593205915212490307519815, −0.38897534472433013470827993329, 0.38897534472433013470827993329, 2.58928593205915212490307519815, 3.38922081885229144696621278738, 4.10665661851761688347162074488, 5.05645028216135290095057077475, 6.19578640602053014565524878691, 6.94787299886291680521490460261, 7.79060854775042365605164468705, 8.201733704151596185987903064087, 9.193654244805756746325292550091

Graph of the $Z$-function along the critical line