| L(s) = 1 | + (−0.809 + 0.587i)2-s + (0.809 − 0.587i)3-s + (0.309 − 0.951i)4-s − 5-s + (−0.309 + 0.951i)6-s + (0.309 + 0.951i)8-s + (0.309 − 0.951i)9-s + (0.809 − 0.587i)10-s + (−0.309 − 0.951i)12-s + (−0.809 + 0.587i)15-s + (−0.809 − 0.587i)16-s + (0.309 + 0.951i)18-s + (0.690 − 0.951i)19-s + (−0.309 + 0.951i)20-s + (0.190 − 0.587i)23-s + (0.809 + 0.587i)24-s + ⋯ |
| L(s) = 1 | + (−0.809 + 0.587i)2-s + (0.809 − 0.587i)3-s + (0.309 − 0.951i)4-s − 5-s + (−0.309 + 0.951i)6-s + (0.309 + 0.951i)8-s + (0.309 − 0.951i)9-s + (0.809 − 0.587i)10-s + (−0.309 − 0.951i)12-s + (−0.809 + 0.587i)15-s + (−0.809 − 0.587i)16-s + (0.309 + 0.951i)18-s + (0.690 − 0.951i)19-s + (−0.309 + 0.951i)20-s + (0.190 − 0.587i)23-s + (0.809 + 0.587i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.569 + 0.822i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.569 + 0.822i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8118646553\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8118646553\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.809 - 0.587i)T \) |
| 3 | \( 1 + (-0.809 + 0.587i)T \) |
| 5 | \( 1 + T \) |
| 31 | \( 1 + (0.809 + 0.587i)T \) |
| good | 7 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 11 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 17 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.690 + 0.951i)T + (-0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 29 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 47 | \( 1 + (1.11 + 1.53i)T + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (-1.11 - 0.363i)T + (0.809 + 0.587i)T^{2} \) |
| 59 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 - 1.17iT - T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.907706102515296388969169680520, −8.593651513844829349233608557951, −7.67107302251207786555335136624, −7.21349042034613693592827418804, −6.57621769153610561090583422930, −5.42868939354976063403352338767, −4.35711757772140610690028697234, −3.24364145005132855106014252961, −2.18009902994333449570581966654, −0.76428550921295347572565042270,
1.49575708439865911393809218343, 2.81769227945297205556446243812, 3.55078957551036625109132315300, 4.19117222202995620490057919495, 5.28894540769403650443196585783, 6.80625363589277479611478844496, 7.66223298685654227327123737123, 8.023478202977722342807222608268, 8.860035313651529217537095959345, 9.473278550953855459395229689402