| L(s) = 1 | + (−0.104 − 0.994i)2-s + (−0.913 − 0.406i)3-s + (−0.978 + 0.207i)4-s + (0.5 − 0.866i)5-s + (−0.309 + 0.951i)6-s + (0.309 + 0.951i)8-s + (0.669 + 0.743i)9-s + (−0.913 − 0.406i)10-s + (0.978 + 0.207i)12-s + (−0.809 + 0.587i)15-s + (0.913 − 0.406i)16-s + (−0.360 − 1.69i)17-s + (0.669 − 0.743i)18-s + (−0.809 − 0.0850i)19-s + (−0.309 + 0.951i)20-s + ⋯ |
| L(s) = 1 | + (−0.104 − 0.994i)2-s + (−0.913 − 0.406i)3-s + (−0.978 + 0.207i)4-s + (0.5 − 0.866i)5-s + (−0.309 + 0.951i)6-s + (0.309 + 0.951i)8-s + (0.669 + 0.743i)9-s + (−0.913 − 0.406i)10-s + (0.978 + 0.207i)12-s + (−0.809 + 0.587i)15-s + (0.913 − 0.406i)16-s + (−0.360 − 1.69i)17-s + (0.669 − 0.743i)18-s + (−0.809 − 0.0850i)19-s + (−0.309 + 0.951i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.970 - 0.239i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.970 - 0.239i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5957176542\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5957176542\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.104 + 0.994i)T \) |
| 3 | \( 1 + (0.913 + 0.406i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 31 | \( 1 + (0.809 + 0.587i)T \) |
| good | 7 | \( 1 + (-0.104 - 0.994i)T^{2} \) |
| 11 | \( 1 + (-0.913 - 0.406i)T^{2} \) |
| 13 | \( 1 + (-0.978 + 0.207i)T^{2} \) |
| 17 | \( 1 + (0.360 + 1.69i)T + (-0.913 + 0.406i)T^{2} \) |
| 19 | \( 1 + (0.809 + 0.0850i)T + (0.978 + 0.207i)T^{2} \) |
| 23 | \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 29 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.669 + 0.743i)T^{2} \) |
| 43 | \( 1 + (0.978 + 0.207i)T^{2} \) |
| 47 | \( 1 + (-0.244 - 0.336i)T + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (0.873 - 0.786i)T + (0.104 - 0.994i)T^{2} \) |
| 59 | \( 1 + (0.669 + 0.743i)T^{2} \) |
| 61 | \( 1 + 1.98iT - T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.104 + 0.994i)T^{2} \) |
| 73 | \( 1 + (0.913 + 0.406i)T^{2} \) |
| 79 | \( 1 + (-1.78 + 0.379i)T + (0.913 - 0.406i)T^{2} \) |
| 83 | \( 1 + (1.78 - 0.795i)T + (0.669 - 0.743i)T^{2} \) |
| 89 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.326452799774879695306745454653, −8.379845526555355119219936094349, −7.54281523942132736280313354115, −6.49513693483728468374247293214, −5.55088852585989883200940232312, −4.84114604486889142067433990549, −4.24958655562005437613727248894, −2.67966576657242723947674565942, −1.74339376661423813286234761720, −0.52697518935719551352472479972,
1.69918517546968472524704118745, 3.51833650549933272186680368404, 4.23724151997532187477016262934, 5.34774169973252383278473423015, 5.92987360956563360380247952246, 6.61000973686776264126190754407, 7.16542345519925080028775594197, 8.241719368510555143595555036509, 9.073387547125364658414613016907, 9.881637699536531717531515171587