| L(s) = 1 | + (−0.978 + 0.207i)2-s + (0.913 + 0.406i)3-s + (0.913 − 0.406i)4-s + (0.5 − 0.866i)5-s + (−0.978 − 0.207i)6-s + (−0.809 + 0.587i)8-s + (0.669 + 0.743i)9-s + (−0.309 + 0.951i)10-s + 1.00·12-s + (0.809 − 0.587i)15-s + (0.669 − 0.743i)16-s + (−0.360 − 1.69i)17-s + (−0.809 − 0.587i)18-s + (0.809 + 0.0850i)19-s + (0.104 − 0.994i)20-s + ⋯ |
| L(s) = 1 | + (−0.978 + 0.207i)2-s + (0.913 + 0.406i)3-s + (0.913 − 0.406i)4-s + (0.5 − 0.866i)5-s + (−0.978 − 0.207i)6-s + (−0.809 + 0.587i)8-s + (0.669 + 0.743i)9-s + (−0.309 + 0.951i)10-s + 1.00·12-s + (0.809 − 0.587i)15-s + (0.669 − 0.743i)16-s + (−0.360 − 1.69i)17-s + (−0.809 − 0.587i)18-s + (0.809 + 0.0850i)19-s + (0.104 − 0.994i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0325i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0325i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.148073870\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.148073870\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.978 - 0.207i)T \) |
| 3 | \( 1 + (-0.913 - 0.406i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 31 | \( 1 + (-0.809 - 0.587i)T \) |
| good | 7 | \( 1 + (-0.104 - 0.994i)T^{2} \) |
| 11 | \( 1 + (-0.913 - 0.406i)T^{2} \) |
| 13 | \( 1 + (-0.978 + 0.207i)T^{2} \) |
| 17 | \( 1 + (0.360 + 1.69i)T + (-0.913 + 0.406i)T^{2} \) |
| 19 | \( 1 + (-0.809 - 0.0850i)T + (0.978 + 0.207i)T^{2} \) |
| 23 | \( 1 + (0.190 - 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 29 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.669 + 0.743i)T^{2} \) |
| 43 | \( 1 + (0.978 + 0.207i)T^{2} \) |
| 47 | \( 1 + (0.244 + 0.336i)T + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (0.873 - 0.786i)T + (0.104 - 0.994i)T^{2} \) |
| 59 | \( 1 + (0.669 + 0.743i)T^{2} \) |
| 61 | \( 1 + 1.98iT - T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.104 + 0.994i)T^{2} \) |
| 73 | \( 1 + (0.913 + 0.406i)T^{2} \) |
| 79 | \( 1 + (1.78 - 0.379i)T + (0.913 - 0.406i)T^{2} \) |
| 83 | \( 1 + (-1.78 + 0.795i)T + (0.669 - 0.743i)T^{2} \) |
| 89 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.402860782501818862369420583950, −8.828597098904265257208520275595, −7.979075748410188394202662079336, −7.41777275555163210364997094704, −6.43578520506366531701263010641, −5.30851105961601032141776308474, −4.69534924454729604473703186627, −3.25041961733510685430082828052, −2.35190921652013615268389062571, −1.23513998674002372905523014041,
1.49162895525118583810608517750, 2.36140900974164937430428887430, 3.17536929976691980073960732125, 4.07511632769051389709463098505, 5.87484575897641766256686990105, 6.54449670324597631312889614226, 7.20429907077334856162794604561, 8.044005885226454357978565251088, 8.570318303445721247197361376039, 9.468312885731899430048091565541