| L(s) = 1 | + (0.104 + 0.994i)2-s + (0.978 + 0.207i)3-s + (−0.978 + 0.207i)4-s + (−0.5 − 0.866i)5-s + (−0.104 + 0.994i)6-s + (−0.309 − 0.951i)8-s + (0.913 + 0.406i)9-s + (0.809 − 0.587i)10-s − 12-s + (−0.309 − 0.951i)15-s + (0.913 − 0.406i)16-s + (1.72 − 0.181i)17-s + (−0.309 + 0.951i)18-s + (−0.309 + 0.278i)19-s + (0.669 + 0.743i)20-s + ⋯ |
| L(s) = 1 | + (0.104 + 0.994i)2-s + (0.978 + 0.207i)3-s + (−0.978 + 0.207i)4-s + (−0.5 − 0.866i)5-s + (−0.104 + 0.994i)6-s + (−0.309 − 0.951i)8-s + (0.913 + 0.406i)9-s + (0.809 − 0.587i)10-s − 12-s + (−0.309 − 0.951i)15-s + (0.913 − 0.406i)16-s + (1.72 − 0.181i)17-s + (−0.309 + 0.951i)18-s + (−0.309 + 0.278i)19-s + (0.669 + 0.743i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.542 - 0.840i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.542 - 0.840i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.474384351\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.474384351\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.104 - 0.994i)T \) |
| 3 | \( 1 + (-0.978 - 0.207i)T \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 + (0.309 - 0.951i)T \) |
| good | 7 | \( 1 + (0.669 - 0.743i)T^{2} \) |
| 11 | \( 1 + (0.978 + 0.207i)T^{2} \) |
| 13 | \( 1 + (-0.104 - 0.994i)T^{2} \) |
| 17 | \( 1 + (-1.72 + 0.181i)T + (0.978 - 0.207i)T^{2} \) |
| 19 | \( 1 + (0.309 - 0.278i)T + (0.104 - 0.994i)T^{2} \) |
| 23 | \( 1 + (-1.30 + 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 29 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.913 + 0.406i)T^{2} \) |
| 43 | \( 1 + (0.104 - 0.994i)T^{2} \) |
| 47 | \( 1 + (1.89 - 0.614i)T + (0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (-0.773 + 1.73i)T + (-0.669 - 0.743i)T^{2} \) |
| 59 | \( 1 + (0.913 + 0.406i)T^{2} \) |
| 61 | \( 1 + 1.48iT - T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.669 + 0.743i)T^{2} \) |
| 73 | \( 1 + (-0.978 - 0.207i)T^{2} \) |
| 79 | \( 1 + (-0.204 - 1.94i)T + (-0.978 + 0.207i)T^{2} \) |
| 83 | \( 1 + (-0.204 + 0.0434i)T + (0.913 - 0.406i)T^{2} \) |
| 89 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 97 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.405039264720477378186227035205, −8.388876180182083127164635456471, −8.220562284729220286559253653924, −7.35978892410379753285560010682, −6.57659544170851020067101371027, −5.26251385741106786361293990428, −4.82951130203263623367815236888, −3.79817689654692047996910492836, −3.11076988479234764192075042546, −1.26914450549733280492875880997,
1.34555786771373172002042354593, 2.56275831012418103526700752347, 3.30848149815427826774253009639, 3.85060939696296299778299144302, 4.97783356406954719319074414463, 6.09610973938716601785352033802, 7.26764922109215074390306584815, 7.79733986827038469746924849312, 8.616260165492055492669241365823, 9.443652817108798842076818757093