| L(s) = 1 | + (−0.913 + 0.406i)2-s + (−0.104 + 0.994i)3-s + (0.669 − 0.743i)4-s + (−0.5 + 0.866i)5-s + (−0.309 − 0.951i)6-s + (−0.309 + 0.951i)8-s + (−0.978 − 0.207i)9-s + (0.104 − 0.994i)10-s + (0.669 + 0.743i)12-s + (−0.809 − 0.587i)15-s + (−0.104 − 0.994i)16-s + (−1.28 − 1.15i)17-s + (0.978 − 0.207i)18-s + (−0.809 + 1.81i)19-s + (0.309 + 0.951i)20-s + ⋯ |
| L(s) = 1 | + (−0.913 + 0.406i)2-s + (−0.104 + 0.994i)3-s + (0.669 − 0.743i)4-s + (−0.5 + 0.866i)5-s + (−0.309 − 0.951i)6-s + (−0.309 + 0.951i)8-s + (−0.978 − 0.207i)9-s + (0.104 − 0.994i)10-s + (0.669 + 0.743i)12-s + (−0.809 − 0.587i)15-s + (−0.104 − 0.994i)16-s + (−1.28 − 1.15i)17-s + (0.978 − 0.207i)18-s + (−0.809 + 1.81i)19-s + (0.309 + 0.951i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.502 + 0.864i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.502 + 0.864i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1788552695\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.1788552695\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.913 - 0.406i)T \) |
| 3 | \( 1 + (0.104 - 0.994i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (0.809 - 0.587i)T \) |
| good | 7 | \( 1 + (0.913 - 0.406i)T^{2} \) |
| 11 | \( 1 + (0.104 - 0.994i)T^{2} \) |
| 13 | \( 1 + (0.669 - 0.743i)T^{2} \) |
| 17 | \( 1 + (1.28 + 1.15i)T + (0.104 + 0.994i)T^{2} \) |
| 19 | \( 1 + (0.809 - 1.81i)T + (-0.669 - 0.743i)T^{2} \) |
| 23 | \( 1 + (0.190 + 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 29 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 43 | \( 1 + (-0.669 - 0.743i)T^{2} \) |
| 47 | \( 1 + (0.873 - 1.20i)T + (-0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (-0.244 + 1.14i)T + (-0.913 - 0.406i)T^{2} \) |
| 59 | \( 1 + (-0.978 - 0.207i)T^{2} \) |
| 61 | \( 1 + 0.813iT - T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.913 + 0.406i)T^{2} \) |
| 73 | \( 1 + (-0.104 + 0.994i)T^{2} \) |
| 79 | \( 1 + (-0.139 + 0.155i)T + (-0.104 - 0.994i)T^{2} \) |
| 83 | \( 1 + (-0.139 - 1.33i)T + (-0.978 + 0.207i)T^{2} \) |
| 89 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 97 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.924267165981775043788579657927, −9.231163589317516359730651344654, −8.386288989404681841299217978038, −7.80477568997620363453204982694, −6.71667041464488973276965777957, −6.24963526019567963896565299835, −5.18226065538421033651474893366, −4.22274063075785618778591202846, −3.18200326768001394979530522853, −2.14794387189691229536480369948,
0.17061751165116463307365468711, 1.57812816497405898210592485054, 2.42532155597575314965973997676, 3.71511538721632008553068464466, 4.73311860498368002482672667757, 5.98141784175663587316031829130, 6.80289771975937942633769379933, 7.45286020565976588980908538278, 8.331633173792443390080683385493, 8.752043450444746173874533067456