Properties

Label 2-1860-1860.1439-c0-0-2
Degree $2$
Conductor $1860$
Sign $0.999 - 0.0325i$
Analytic cond. $0.928260$
Root an. cond. $0.963462$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.978 + 0.207i)2-s + (−0.913 + 0.406i)3-s + (0.913 + 0.406i)4-s + (−0.5 − 0.866i)5-s + (−0.978 + 0.207i)6-s + (0.809 + 0.587i)8-s + (0.669 − 0.743i)9-s + (−0.309 − 0.951i)10-s − 1.00·12-s + (0.809 + 0.587i)15-s + (0.669 + 0.743i)16-s + (0.360 − 1.69i)17-s + (0.809 − 0.587i)18-s + (0.809 − 0.0850i)19-s + (−0.104 − 0.994i)20-s + ⋯
L(s)  = 1  + (0.978 + 0.207i)2-s + (−0.913 + 0.406i)3-s + (0.913 + 0.406i)4-s + (−0.5 − 0.866i)5-s + (−0.978 + 0.207i)6-s + (0.809 + 0.587i)8-s + (0.669 − 0.743i)9-s + (−0.309 − 0.951i)10-s − 1.00·12-s + (0.809 + 0.587i)15-s + (0.669 + 0.743i)16-s + (0.360 − 1.69i)17-s + (0.809 − 0.587i)18-s + (0.809 − 0.0850i)19-s + (−0.104 − 0.994i)20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0325i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0325i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1860\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 31\)
Sign: $0.999 - 0.0325i$
Analytic conductor: \(0.928260\)
Root analytic conductor: \(0.963462\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1860} (1439, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1860,\ (\ :0),\ 0.999 - 0.0325i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.544404999\)
\(L(\frac12)\) \(\approx\) \(1.544404999\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.978 - 0.207i)T \)
3 \( 1 + (0.913 - 0.406i)T \)
5 \( 1 + (0.5 + 0.866i)T \)
31 \( 1 + (-0.809 + 0.587i)T \)
good7 \( 1 + (-0.104 + 0.994i)T^{2} \)
11 \( 1 + (-0.913 + 0.406i)T^{2} \)
13 \( 1 + (-0.978 - 0.207i)T^{2} \)
17 \( 1 + (-0.360 + 1.69i)T + (-0.913 - 0.406i)T^{2} \)
19 \( 1 + (-0.809 + 0.0850i)T + (0.978 - 0.207i)T^{2} \)
23 \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \)
29 \( 1 + (0.309 - 0.951i)T^{2} \)
37 \( 1 + (-0.5 - 0.866i)T^{2} \)
41 \( 1 + (-0.669 - 0.743i)T^{2} \)
43 \( 1 + (0.978 - 0.207i)T^{2} \)
47 \( 1 + (-0.244 + 0.336i)T + (-0.309 - 0.951i)T^{2} \)
53 \( 1 + (-0.873 - 0.786i)T + (0.104 + 0.994i)T^{2} \)
59 \( 1 + (0.669 - 0.743i)T^{2} \)
61 \( 1 - 1.98iT - T^{2} \)
67 \( 1 + (-0.5 + 0.866i)T^{2} \)
71 \( 1 + (-0.104 - 0.994i)T^{2} \)
73 \( 1 + (0.913 - 0.406i)T^{2} \)
79 \( 1 + (1.78 + 0.379i)T + (0.913 + 0.406i)T^{2} \)
83 \( 1 + (1.78 + 0.795i)T + (0.669 + 0.743i)T^{2} \)
89 \( 1 + (-0.809 - 0.587i)T^{2} \)
97 \( 1 + (0.809 + 0.587i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.533101049419860827949123903291, −8.621074087550921681582589941825, −7.43428161314403730422544505318, −7.12528258283471741293385080680, −5.85855528971837640004409373457, −5.32495127075221233263712618205, −4.65445615477498152656987677608, −3.91585428737179483298229483087, −2.87722782022361655065032323475, −1.12722966200593096791137705613, 1.41048923501920059595103904683, 2.64350187755066527354709464145, 3.68316774992374420251549664761, 4.48100950486073401477612164573, 5.48230521408799894388244742082, 6.21378545016093420676126665778, 6.78714659971829077883998445294, 7.56076337279996563019116901345, 8.300105241674887178078883919231, 9.969773385991031098674086142079

Graph of the $Z$-function along the critical line