| L(s) = 1 | + (0.978 + 0.207i)2-s + (−0.913 + 0.406i)3-s + (0.913 + 0.406i)4-s + (−0.5 − 0.866i)5-s + (−0.978 + 0.207i)6-s + (0.809 + 0.587i)8-s + (0.669 − 0.743i)9-s + (−0.309 − 0.951i)10-s − 1.00·12-s + (0.809 + 0.587i)15-s + (0.669 + 0.743i)16-s + (0.360 − 1.69i)17-s + (0.809 − 0.587i)18-s + (0.809 − 0.0850i)19-s + (−0.104 − 0.994i)20-s + ⋯ |
| L(s) = 1 | + (0.978 + 0.207i)2-s + (−0.913 + 0.406i)3-s + (0.913 + 0.406i)4-s + (−0.5 − 0.866i)5-s + (−0.978 + 0.207i)6-s + (0.809 + 0.587i)8-s + (0.669 − 0.743i)9-s + (−0.309 − 0.951i)10-s − 1.00·12-s + (0.809 + 0.587i)15-s + (0.669 + 0.743i)16-s + (0.360 − 1.69i)17-s + (0.809 − 0.587i)18-s + (0.809 − 0.0850i)19-s + (−0.104 − 0.994i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0325i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0325i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.544404999\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.544404999\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.978 - 0.207i)T \) |
| 3 | \( 1 + (0.913 - 0.406i)T \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 + (-0.809 + 0.587i)T \) |
| good | 7 | \( 1 + (-0.104 + 0.994i)T^{2} \) |
| 11 | \( 1 + (-0.913 + 0.406i)T^{2} \) |
| 13 | \( 1 + (-0.978 - 0.207i)T^{2} \) |
| 17 | \( 1 + (-0.360 + 1.69i)T + (-0.913 - 0.406i)T^{2} \) |
| 19 | \( 1 + (-0.809 + 0.0850i)T + (0.978 - 0.207i)T^{2} \) |
| 23 | \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 29 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.669 - 0.743i)T^{2} \) |
| 43 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 47 | \( 1 + (-0.244 + 0.336i)T + (-0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (-0.873 - 0.786i)T + (0.104 + 0.994i)T^{2} \) |
| 59 | \( 1 + (0.669 - 0.743i)T^{2} \) |
| 61 | \( 1 - 1.98iT - T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.104 - 0.994i)T^{2} \) |
| 73 | \( 1 + (0.913 - 0.406i)T^{2} \) |
| 79 | \( 1 + (1.78 + 0.379i)T + (0.913 + 0.406i)T^{2} \) |
| 83 | \( 1 + (1.78 + 0.795i)T + (0.669 + 0.743i)T^{2} \) |
| 89 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 97 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.533101049419860827949123903291, −8.621074087550921681582589941825, −7.43428161314403730422544505318, −7.12528258283471741293385080680, −5.85855528971837640004409373457, −5.32495127075221233263712618205, −4.65445615477498152656987677608, −3.91585428737179483298229483087, −2.87722782022361655065032323475, −1.12722966200593096791137705613,
1.41048923501920059595103904683, 2.64350187755066527354709464145, 3.68316774992374420251549664761, 4.48100950486073401477612164573, 5.48230521408799894388244742082, 6.21378545016093420676126665778, 6.78714659971829077883998445294, 7.56076337279996563019116901345, 8.300105241674887178078883919231, 9.969773385991031098674086142079