| L(s) = 1 | + (0.913 + 0.406i)2-s + (0.104 + 0.994i)3-s + (0.669 + 0.743i)4-s + (0.5 + 0.866i)5-s + (−0.309 + 0.951i)6-s + (0.309 + 0.951i)8-s + (−0.978 + 0.207i)9-s + (0.104 + 0.994i)10-s + (−0.669 + 0.743i)12-s + (−0.809 + 0.587i)15-s + (−0.104 + 0.994i)16-s + (1.28 − 1.15i)17-s + (−0.978 − 0.207i)18-s + (−0.809 − 1.81i)19-s + (−0.309 + 0.951i)20-s + ⋯ |
| L(s) = 1 | + (0.913 + 0.406i)2-s + (0.104 + 0.994i)3-s + (0.669 + 0.743i)4-s + (0.5 + 0.866i)5-s + (−0.309 + 0.951i)6-s + (0.309 + 0.951i)8-s + (−0.978 + 0.207i)9-s + (0.104 + 0.994i)10-s + (−0.669 + 0.743i)12-s + (−0.809 + 0.587i)15-s + (−0.104 + 0.994i)16-s + (1.28 − 1.15i)17-s + (−0.978 − 0.207i)18-s + (−0.809 − 1.81i)19-s + (−0.309 + 0.951i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.502 - 0.864i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.502 - 0.864i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.160074588\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.160074588\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.913 - 0.406i)T \) |
| 3 | \( 1 + (-0.104 - 0.994i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 31 | \( 1 + (0.809 + 0.587i)T \) |
| good | 7 | \( 1 + (0.913 + 0.406i)T^{2} \) |
| 11 | \( 1 + (0.104 + 0.994i)T^{2} \) |
| 13 | \( 1 + (0.669 + 0.743i)T^{2} \) |
| 17 | \( 1 + (-1.28 + 1.15i)T + (0.104 - 0.994i)T^{2} \) |
| 19 | \( 1 + (0.809 + 1.81i)T + (-0.669 + 0.743i)T^{2} \) |
| 23 | \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 29 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.978 + 0.207i)T^{2} \) |
| 43 | \( 1 + (-0.669 + 0.743i)T^{2} \) |
| 47 | \( 1 + (-0.873 - 1.20i)T + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (0.244 + 1.14i)T + (-0.913 + 0.406i)T^{2} \) |
| 59 | \( 1 + (-0.978 + 0.207i)T^{2} \) |
| 61 | \( 1 - 0.813iT - T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.913 - 0.406i)T^{2} \) |
| 73 | \( 1 + (-0.104 - 0.994i)T^{2} \) |
| 79 | \( 1 + (-0.139 - 0.155i)T + (-0.104 + 0.994i)T^{2} \) |
| 83 | \( 1 + (0.139 - 1.33i)T + (-0.978 - 0.207i)T^{2} \) |
| 89 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.667994611977029646804957689372, −9.019996867448253897054349615216, −7.976837582802114970164358118389, −7.12637273221822651165663245178, −6.41365438832127223662136459989, −5.49633354887334351383473388770, −4.90499096507938091133795221187, −3.94173378842341594301041598851, −2.97957180213601084421795797664, −2.44924664130150271713072593523,
1.39168437107874467355329039400, 1.88641005498357129818911909852, 3.25968842984587021400459646163, 4.08366887893652301688017258527, 5.38369649213999038657207478648, 5.79714236523696041186868227553, 6.48927764254152569556837746293, 7.61394041385909770071204389597, 8.228865174339714994616084457887, 9.170922571533276151383834201758