| L(s) = 1 | + (−0.309 − 0.951i)2-s + (0.309 + 0.951i)3-s + (−0.809 + 0.587i)4-s + 5-s + (0.809 − 0.587i)6-s + (0.809 + 0.587i)8-s + (−0.809 + 0.587i)9-s + (−0.309 − 0.951i)10-s + (−0.809 − 0.587i)12-s + (0.309 + 0.951i)15-s + (0.309 − 0.951i)16-s + (0.809 + 0.587i)18-s + (1.80 + 0.587i)19-s + (−0.809 + 0.587i)20-s + (−1.30 + 0.951i)23-s + (−0.309 + 0.951i)24-s + ⋯ |
| L(s) = 1 | + (−0.309 − 0.951i)2-s + (0.309 + 0.951i)3-s + (−0.809 + 0.587i)4-s + 5-s + (0.809 − 0.587i)6-s + (0.809 + 0.587i)8-s + (−0.809 + 0.587i)9-s + (−0.309 − 0.951i)10-s + (−0.809 − 0.587i)12-s + (0.309 + 0.951i)15-s + (0.309 − 0.951i)16-s + (0.809 + 0.587i)18-s + (1.80 + 0.587i)19-s + (−0.809 + 0.587i)20-s + (−1.30 + 0.951i)23-s + (−0.309 + 0.951i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.965 - 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.965 - 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.179786412\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.179786412\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.309 + 0.951i)T \) |
| 3 | \( 1 + (-0.309 - 0.951i)T \) |
| 5 | \( 1 - T \) |
| 31 | \( 1 + (-0.309 + 0.951i)T \) |
| good | 7 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 11 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (-1.80 - 0.587i)T + (0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 + (1.30 - 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 29 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 47 | \( 1 + (1.11 - 0.363i)T + (0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (-1.11 - 1.53i)T + (-0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 - 1.90iT - T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 97 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.681314105358588707570906243937, −9.063560436350543976633838790193, −8.162050826807470876291038056355, −7.43876006367582684911582931766, −5.87162349499340503398493004097, −5.33982100999309271339809561532, −4.32912171660470875000827340324, −3.44343095677561847994309735259, −2.61883253884069359914216627617, −1.54632828859088699776456699409,
1.06947050487042783174678019421, 2.20519177403856578838694642964, 3.43040812018609698711606768303, 4.92870687516810184692643415484, 5.57279402041584039770696279142, 6.49119982247709318411973322592, 6.86117299035637665850889405461, 7.86683741671395288550662338482, 8.414033423555046015373566840060, 9.324599310834984565141929940022