| L(s) = 1 | + (0.309 + 0.951i)2-s + (−0.309 − 0.951i)3-s + (−0.809 + 0.587i)4-s − 5-s + (0.809 − 0.587i)6-s + (−0.809 − 0.587i)8-s + (−0.809 + 0.587i)9-s + (−0.309 − 0.951i)10-s + (0.809 + 0.587i)12-s + (0.309 + 0.951i)15-s + (0.309 − 0.951i)16-s + (−0.809 − 0.587i)18-s + (1.80 + 0.587i)19-s + (0.809 − 0.587i)20-s + (1.30 − 0.951i)23-s + (−0.309 + 0.951i)24-s + ⋯ |
| L(s) = 1 | + (0.309 + 0.951i)2-s + (−0.309 − 0.951i)3-s + (−0.809 + 0.587i)4-s − 5-s + (0.809 − 0.587i)6-s + (−0.809 − 0.587i)8-s + (−0.809 + 0.587i)9-s + (−0.309 − 0.951i)10-s + (0.809 + 0.587i)12-s + (0.309 + 0.951i)15-s + (0.309 − 0.951i)16-s + (−0.809 − 0.587i)18-s + (1.80 + 0.587i)19-s + (0.809 − 0.587i)20-s + (1.30 − 0.951i)23-s + (−0.309 + 0.951i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.965 - 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.965 - 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8805846308\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8805846308\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.309 - 0.951i)T \) |
| 3 | \( 1 + (0.309 + 0.951i)T \) |
| 5 | \( 1 + T \) |
| 31 | \( 1 + (-0.309 + 0.951i)T \) |
| good | 7 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 11 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (-1.80 - 0.587i)T + (0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 + (-1.30 + 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 29 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 47 | \( 1 + (-1.11 + 0.363i)T + (0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (1.11 + 1.53i)T + (-0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 - 1.90iT - T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (0.5 - 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 97 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.062983322650728358893269639191, −8.356641756810136710418914793250, −7.67243500522977328739916440368, −7.16888996607806039546974706033, −6.46186670530347118588049342567, −5.48750284093002915260974169871, −4.83404655929998743129222863774, −3.70491334451218341265604651568, −2.79535548866803986971743982040, −0.852103272735277286414273935796,
1.03902734516361877238058269078, 3.06760707477638920498439212994, 3.30891223862349533646683871086, 4.48428233879645075623191701894, 4.97655005481667650370630086224, 5.81127512649439998327069896776, 7.05233650206445582930015938585, 8.001601156851466331759100389695, 9.097496420126415712034167561372, 9.340113297170179774115268220338