| L(s) = 1 | + (0.707 + 0.707i)3-s + (0.773 − 2.09i)5-s + (−0.100 − 0.100i)7-s + 1.00i·9-s + 6.12i·11-s + (1.74 + 1.74i)13-s + (2.03 − 0.936i)15-s + (−4.02 + 4.02i)17-s + 4.45i·19-s − 0.141i·21-s + (−2.71 − 2.71i)23-s + (−3.80 − 3.24i)25-s + (−0.707 + 0.707i)27-s − 0.134·29-s + (−4.54 + 3.21i)31-s + ⋯ |
| L(s) = 1 | + (0.408 + 0.408i)3-s + (0.345 − 0.938i)5-s + (−0.0378 − 0.0378i)7-s + 0.333i·9-s + 1.84i·11-s + (0.484 + 0.484i)13-s + (0.524 − 0.241i)15-s + (−0.976 + 0.976i)17-s + 1.02i·19-s − 0.0309i·21-s + (−0.566 − 0.566i)23-s + (−0.760 − 0.648i)25-s + (−0.136 + 0.136i)27-s − 0.0248·29-s + (−0.816 + 0.577i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0302 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0302 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.704490605\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.704490605\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 + (-0.773 + 2.09i)T \) |
| 31 | \( 1 + (4.54 - 3.21i)T \) |
| good | 7 | \( 1 + (0.100 + 0.100i)T + 7iT^{2} \) |
| 11 | \( 1 - 6.12iT - 11T^{2} \) |
| 13 | \( 1 + (-1.74 - 1.74i)T + 13iT^{2} \) |
| 17 | \( 1 + (4.02 - 4.02i)T - 17iT^{2} \) |
| 19 | \( 1 - 4.45iT - 19T^{2} \) |
| 23 | \( 1 + (2.71 + 2.71i)T + 23iT^{2} \) |
| 29 | \( 1 + 0.134T + 29T^{2} \) |
| 37 | \( 1 + (-3.24 + 3.24i)T - 37iT^{2} \) |
| 41 | \( 1 - 0.335T + 41T^{2} \) |
| 43 | \( 1 + (0.907 + 0.907i)T + 43iT^{2} \) |
| 47 | \( 1 + (-0.662 - 0.662i)T + 47iT^{2} \) |
| 53 | \( 1 + (-3.93 - 3.93i)T + 53iT^{2} \) |
| 59 | \( 1 - 12.4iT - 59T^{2} \) |
| 61 | \( 1 - 11.1iT - 61T^{2} \) |
| 67 | \( 1 + (-5.93 - 5.93i)T + 67iT^{2} \) |
| 71 | \( 1 - 1.48T + 71T^{2} \) |
| 73 | \( 1 + (8.06 + 8.06i)T + 73iT^{2} \) |
| 79 | \( 1 - 6.67T + 79T^{2} \) |
| 83 | \( 1 + (-9.79 - 9.79i)T + 83iT^{2} \) |
| 89 | \( 1 - 7.07T + 89T^{2} \) |
| 97 | \( 1 + (-0.653 - 0.653i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.313906183288418791678795925168, −8.804492666751351831446838148340, −8.035328740164418427161624960043, −7.14159066261295728128978567340, −6.19717779772879315723539898000, −5.29022576254368024968033083212, −4.26196117065988063805804910977, −4.02412260119390580189481164062, −2.26004434229178244301195610019, −1.61733904103632802882849249439,
0.57016529620320237501514651265, 2.16656473236145942019662245651, 3.04636267368294580402842051014, 3.66729973043407799887967355787, 5.12220717410756485858697420491, 6.08979445272454462657604978633, 6.54901056131520229775017976249, 7.50218048789373505878481772044, 8.211977906980086965865962339392, 9.058193958261695211314741041408