| L(s) = 1 | + (−0.707 − 0.707i)3-s + (−0.198 + 2.22i)5-s + (0.548 + 0.548i)7-s + 1.00i·9-s − 2.53i·11-s + (−2.86 − 2.86i)13-s + (1.71 − 1.43i)15-s + (−2.54 + 2.54i)17-s + 2.84i·19-s − 0.775i·21-s + (−0.120 − 0.120i)23-s + (−4.92 − 0.885i)25-s + (0.707 − 0.707i)27-s + 0.666·29-s + (3.54 + 4.29i)31-s + ⋯ |
| L(s) = 1 | + (−0.408 − 0.408i)3-s + (−0.0888 + 0.996i)5-s + (0.207 + 0.207i)7-s + 0.333i·9-s − 0.763i·11-s + (−0.795 − 0.795i)13-s + (0.442 − 0.370i)15-s + (−0.617 + 0.617i)17-s + 0.652i·19-s − 0.169i·21-s + (−0.0252 − 0.0252i)23-s + (−0.984 − 0.177i)25-s + (0.136 − 0.136i)27-s + 0.123·29-s + (0.636 + 0.771i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.932 + 0.361i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.932 + 0.361i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.1508139096\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.1508139096\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
| 5 | \( 1 + (0.198 - 2.22i)T \) |
| 31 | \( 1 + (-3.54 - 4.29i)T \) |
| good | 7 | \( 1 + (-0.548 - 0.548i)T + 7iT^{2} \) |
| 11 | \( 1 + 2.53iT - 11T^{2} \) |
| 13 | \( 1 + (2.86 + 2.86i)T + 13iT^{2} \) |
| 17 | \( 1 + (2.54 - 2.54i)T - 17iT^{2} \) |
| 19 | \( 1 - 2.84iT - 19T^{2} \) |
| 23 | \( 1 + (0.120 + 0.120i)T + 23iT^{2} \) |
| 29 | \( 1 - 0.666T + 29T^{2} \) |
| 37 | \( 1 + (-1.99 + 1.99i)T - 37iT^{2} \) |
| 41 | \( 1 + 8.89T + 41T^{2} \) |
| 43 | \( 1 + (7.10 + 7.10i)T + 43iT^{2} \) |
| 47 | \( 1 + (3.40 + 3.40i)T + 47iT^{2} \) |
| 53 | \( 1 + (-2.68 - 2.68i)T + 53iT^{2} \) |
| 59 | \( 1 - 4.33iT - 59T^{2} \) |
| 61 | \( 1 + 10.1iT - 61T^{2} \) |
| 67 | \( 1 + (-0.114 - 0.114i)T + 67iT^{2} \) |
| 71 | \( 1 + 5.87T + 71T^{2} \) |
| 73 | \( 1 + (7.95 + 7.95i)T + 73iT^{2} \) |
| 79 | \( 1 + 1.76T + 79T^{2} \) |
| 83 | \( 1 + (-1.44 - 1.44i)T + 83iT^{2} \) |
| 89 | \( 1 + 6.41T + 89T^{2} \) |
| 97 | \( 1 + (11.1 + 11.1i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.632510176585912593581024969839, −8.110465089041528263355679981839, −7.20625663016572172156250245966, −6.54161307038425897991707886006, −5.78033562670782257551597505575, −4.98589681769602390681526311472, −3.71093670798415314892229943087, −2.84742747275000707830765778980, −1.78489281471255493318148244889, −0.05718005355863170568297924273,
1.44721957292730746450606470984, 2.68039397483950495327518021152, 4.22505404491953844107520071324, 4.62924743153382510014929672707, 5.27544150801955551490590462205, 6.45958689769322742375154320788, 7.17019328492055239065936053322, 8.080289914173491854215116935902, 8.940613994422760182877474596226, 9.630482997288849506025897829301