| L(s) = 1 | + (0.707 − 0.707i)3-s + (−1.72 − 1.41i)5-s + (−0.575 + 0.575i)7-s − 1.00i·9-s + 5.07i·11-s + (−0.293 + 0.293i)13-s + (−2.22 + 0.218i)15-s + (0.365 + 0.365i)17-s + 0.439i·19-s + 0.814i·21-s + (4.26 − 4.26i)23-s + (0.972 + 4.90i)25-s + (−0.707 − 0.707i)27-s + 6.60·29-s + (5.23 − 1.88i)31-s + ⋯ |
| L(s) = 1 | + (0.408 − 0.408i)3-s + (−0.772 − 0.634i)5-s + (−0.217 + 0.217i)7-s − 0.333i·9-s + 1.53i·11-s + (−0.0813 + 0.0813i)13-s + (−0.574 + 0.0563i)15-s + (0.0887 + 0.0887i)17-s + 0.100i·19-s + 0.177i·21-s + (0.889 − 0.889i)23-s + (0.194 + 0.980i)25-s + (−0.136 − 0.136i)27-s + 1.22·29-s + (0.940 − 0.338i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 + 0.110i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 + 0.110i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.649727627\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.649727627\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 + (1.72 + 1.41i)T \) |
| 31 | \( 1 + (-5.23 + 1.88i)T \) |
| good | 7 | \( 1 + (0.575 - 0.575i)T - 7iT^{2} \) |
| 11 | \( 1 - 5.07iT - 11T^{2} \) |
| 13 | \( 1 + (0.293 - 0.293i)T - 13iT^{2} \) |
| 17 | \( 1 + (-0.365 - 0.365i)T + 17iT^{2} \) |
| 19 | \( 1 - 0.439iT - 19T^{2} \) |
| 23 | \( 1 + (-4.26 + 4.26i)T - 23iT^{2} \) |
| 29 | \( 1 - 6.60T + 29T^{2} \) |
| 37 | \( 1 + (-0.849 - 0.849i)T + 37iT^{2} \) |
| 41 | \( 1 - 10.3T + 41T^{2} \) |
| 43 | \( 1 + (6.93 - 6.93i)T - 43iT^{2} \) |
| 47 | \( 1 + (3.89 - 3.89i)T - 47iT^{2} \) |
| 53 | \( 1 + (-8.89 + 8.89i)T - 53iT^{2} \) |
| 59 | \( 1 + 8.14iT - 59T^{2} \) |
| 61 | \( 1 + 1.48iT - 61T^{2} \) |
| 67 | \( 1 + (6.46 - 6.46i)T - 67iT^{2} \) |
| 71 | \( 1 + 11.3T + 71T^{2} \) |
| 73 | \( 1 + (-10.0 + 10.0i)T - 73iT^{2} \) |
| 79 | \( 1 - 11.2T + 79T^{2} \) |
| 83 | \( 1 + (-4.35 + 4.35i)T - 83iT^{2} \) |
| 89 | \( 1 - 4.17T + 89T^{2} \) |
| 97 | \( 1 + (5.28 - 5.28i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.188065596923223905919150194672, −8.326874603536662363301873109816, −7.76127769273814209956097557078, −6.96006845726269082851413470053, −6.23187219400690710119318478698, −4.81057206743589762679779647800, −4.48355981456787564206637802734, −3.23751900659297568245885975505, −2.23782681974924392314294606122, −0.954670880217869497754514819444,
0.78409481668804861795968206459, 2.70330258654028786801418787393, 3.30597649529512423085010736951, 4.07320482072243226775328367873, 5.12941563046836933847115973849, 6.12507572861728702335225605648, 6.97108006508000324614275503753, 7.75414587689629646096134996422, 8.513271112995941492671903773371, 9.074477457836922925747606249052