Properties

Label 2-1860-1.1-c3-0-39
Degree $2$
Conductor $1860$
Sign $-1$
Analytic cond. $109.743$
Root an. cond. $10.4758$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 5·5-s − 8·7-s + 9·9-s − 20·11-s − 34·13-s − 15·15-s − 6·17-s + 12·19-s + 24·21-s + 120·23-s + 25·25-s − 27·27-s + 246·29-s + 31·31-s + 60·33-s − 40·35-s + 310·37-s + 102·39-s − 518·41-s + 92·43-s + 45·45-s − 88·47-s − 279·49-s + 18·51-s − 738·53-s − 100·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.431·7-s + 1/3·9-s − 0.548·11-s − 0.725·13-s − 0.258·15-s − 0.0856·17-s + 0.144·19-s + 0.249·21-s + 1.08·23-s + 1/5·25-s − 0.192·27-s + 1.57·29-s + 0.179·31-s + 0.316·33-s − 0.193·35-s + 1.37·37-s + 0.418·39-s − 1.97·41-s + 0.326·43-s + 0.149·45-s − 0.273·47-s − 0.813·49-s + 0.0494·51-s − 1.91·53-s − 0.245·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1860\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 31\)
Sign: $-1$
Analytic conductor: \(109.743\)
Root analytic conductor: \(10.4758\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1860,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
5 \( 1 - p T \)
31 \( 1 - p T \)
good7 \( 1 + 8 T + p^{3} T^{2} \)
11 \( 1 + 20 T + p^{3} T^{2} \)
13 \( 1 + 34 T + p^{3} T^{2} \)
17 \( 1 + 6 T + p^{3} T^{2} \)
19 \( 1 - 12 T + p^{3} T^{2} \)
23 \( 1 - 120 T + p^{3} T^{2} \)
29 \( 1 - 246 T + p^{3} T^{2} \)
37 \( 1 - 310 T + p^{3} T^{2} \)
41 \( 1 + 518 T + p^{3} T^{2} \)
43 \( 1 - 92 T + p^{3} T^{2} \)
47 \( 1 + 88 T + p^{3} T^{2} \)
53 \( 1 + 738 T + p^{3} T^{2} \)
59 \( 1 - 268 T + p^{3} T^{2} \)
61 \( 1 - 6 p T + p^{3} T^{2} \)
67 \( 1 - 220 T + p^{3} T^{2} \)
71 \( 1 + 512 T + p^{3} T^{2} \)
73 \( 1 + 758 T + p^{3} T^{2} \)
79 \( 1 - 160 T + p^{3} T^{2} \)
83 \( 1 - 1348 T + p^{3} T^{2} \)
89 \( 1 - 18 T + p^{3} T^{2} \)
97 \( 1 - 1634 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.495893720630614149658607882914, −7.62087170026264427934048737349, −6.72658903580713775022663854163, −6.19899721891415180092922270877, −5.10796763704213823547994109447, −4.70154192755217439390450092362, −3.28742937552686409862019983166, −2.45089327650254931770986989090, −1.15576524145047880151924702834, 0, 1.15576524145047880151924702834, 2.45089327650254931770986989090, 3.28742937552686409862019983166, 4.70154192755217439390450092362, 5.10796763704213823547994109447, 6.19899721891415180092922270877, 6.72658903580713775022663854163, 7.62087170026264427934048737349, 8.495893720630614149658607882914

Graph of the $Z$-function along the critical line