Properties

Label 2-1860-1.1-c1-0-6
Degree $2$
Conductor $1860$
Sign $1$
Analytic cond. $14.8521$
Root an. cond. $3.85385$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 4.47·7-s + 9-s + 2·11-s + 4.47·13-s + 15-s + 1.07·17-s + 4·19-s − 4.47·21-s − 1.07·23-s + 25-s + 27-s − 3.54·29-s − 31-s + 2·33-s − 4.47·35-s + 2.47·37-s + 4.47·39-s + 4·41-s + 2·43-s + 45-s − 8.02·47-s + 13.0·49-s + 1.07·51-s + 10.0·53-s + 2·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 1.69·7-s + 0.333·9-s + 0.603·11-s + 1.24·13-s + 0.258·15-s + 0.260·17-s + 0.917·19-s − 0.976·21-s − 0.223·23-s + 0.200·25-s + 0.192·27-s − 0.658·29-s − 0.179·31-s + 0.348·33-s − 0.756·35-s + 0.406·37-s + 0.716·39-s + 0.624·41-s + 0.304·43-s + 0.149·45-s − 1.17·47-s + 1.86·49-s + 0.150·51-s + 1.37·53-s + 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1860\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 31\)
Sign: $1$
Analytic conductor: \(14.8521\)
Root analytic conductor: \(3.85385\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1860,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.158120240\)
\(L(\frac12)\) \(\approx\) \(2.158120240\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
31 \( 1 + T \)
good7 \( 1 + 4.47T + 7T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
13 \( 1 - 4.47T + 13T^{2} \)
17 \( 1 - 1.07T + 17T^{2} \)
19 \( 1 - 4T + 19T^{2} \)
23 \( 1 + 1.07T + 23T^{2} \)
29 \( 1 + 3.54T + 29T^{2} \)
37 \( 1 - 2.47T + 37T^{2} \)
41 \( 1 - 4T + 41T^{2} \)
43 \( 1 - 2T + 43T^{2} \)
47 \( 1 + 8.02T + 47T^{2} \)
53 \( 1 - 10.0T + 53T^{2} \)
59 \( 1 - 9.54T + 59T^{2} \)
61 \( 1 + 0.146T + 61T^{2} \)
67 \( 1 + 4.32T + 67T^{2} \)
71 \( 1 - 12.4T + 71T^{2} \)
73 \( 1 - 15.4T + 73T^{2} \)
79 \( 1 - 9.87T + 79T^{2} \)
83 \( 1 + 2.92T + 83T^{2} \)
89 \( 1 - 15.4T + 89T^{2} \)
97 \( 1 - 1.85T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.392293847918686796759687528107, −8.645014627842812102591637602771, −7.66257684755500477486266978727, −6.71844871281913631494446307180, −6.21355587853058057737994098734, −5.36118068344479225126909057859, −3.83223300507774775707693070471, −3.47417553242543839160491035304, −2.39366358737741486426872338392, −1.00902756371024399298149263107, 1.00902756371024399298149263107, 2.39366358737741486426872338392, 3.47417553242543839160491035304, 3.83223300507774775707693070471, 5.36118068344479225126909057859, 6.21355587853058057737994098734, 6.71844871281913631494446307180, 7.66257684755500477486266978727, 8.645014627842812102591637602771, 9.392293847918686796759687528107

Graph of the $Z$-function along the critical line