Properties

Label 2-1860-1.1-c1-0-15
Degree $2$
Conductor $1860$
Sign $-1$
Analytic cond. $14.8521$
Root an. cond. $3.85385$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 2.44·7-s + 9-s − 4.44·13-s + 15-s + 2·17-s − 4.89·19-s − 2.44·21-s − 2.89·23-s + 25-s − 27-s + 0.449·29-s + 31-s − 2.44·35-s − 3.55·37-s + 4.44·39-s + 7.79·41-s − 3.10·43-s − 45-s + 8.89·47-s − 1.00·49-s − 2·51-s − 6·53-s + 4.89·57-s − 7.34·59-s − 6.89·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 0.925·7-s + 0.333·9-s − 1.23·13-s + 0.258·15-s + 0.485·17-s − 1.12·19-s − 0.534·21-s − 0.604·23-s + 0.200·25-s − 0.192·27-s + 0.0834·29-s + 0.179·31-s − 0.414·35-s − 0.583·37-s + 0.712·39-s + 1.21·41-s − 0.472·43-s − 0.149·45-s + 1.29·47-s − 0.142·49-s − 0.280·51-s − 0.824·53-s + 0.648·57-s − 0.956·59-s − 0.883·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1860\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 31\)
Sign: $-1$
Analytic conductor: \(14.8521\)
Root analytic conductor: \(3.85385\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1860,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
31 \( 1 - T \)
good7 \( 1 - 2.44T + 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 4.44T + 13T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 + 4.89T + 19T^{2} \)
23 \( 1 + 2.89T + 23T^{2} \)
29 \( 1 - 0.449T + 29T^{2} \)
37 \( 1 + 3.55T + 37T^{2} \)
41 \( 1 - 7.79T + 41T^{2} \)
43 \( 1 + 3.10T + 43T^{2} \)
47 \( 1 - 8.89T + 47T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 + 7.34T + 59T^{2} \)
61 \( 1 + 6.89T + 61T^{2} \)
67 \( 1 + 6.44T + 67T^{2} \)
71 \( 1 - 1.55T + 71T^{2} \)
73 \( 1 + 12.4T + 73T^{2} \)
79 \( 1 + 2.89T + 79T^{2} \)
83 \( 1 + 1.10T + 83T^{2} \)
89 \( 1 + 4.44T + 89T^{2} \)
97 \( 1 + 5.10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.782056008098806155403105537388, −7.891029665001142605898083553335, −7.42164356702284395664005869848, −6.44085605214833663389355966338, −5.53816424808173309014809663781, −4.69671510872681980098394481413, −4.12512090454874214751054433819, −2.71956888659405977458816066438, −1.56624231640967028021933132310, 0, 1.56624231640967028021933132310, 2.71956888659405977458816066438, 4.12512090454874214751054433819, 4.69671510872681980098394481413, 5.53816424808173309014809663781, 6.44085605214833663389355966338, 7.42164356702284395664005869848, 7.891029665001142605898083553335, 8.782056008098806155403105537388

Graph of the $Z$-function along the critical line