Properties

Label 2-1860-1.1-c1-0-1
Degree $2$
Conductor $1860$
Sign $1$
Analytic cond. $14.8521$
Root an. cond. $3.85385$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 4.64·7-s + 9-s − 6.12·11-s + 3.47·13-s − 15-s − 6.44·17-s + 4.64·21-s + 6.44·23-s + 25-s − 27-s + 8.96·29-s + 31-s + 6.12·33-s − 4.64·35-s − 2.64·37-s − 3.47·39-s + 8.12·41-s + 6.12·43-s + 45-s + 0.853·47-s + 14.6·49-s + 6.44·51-s − 1.14·53-s − 6.12·55-s − 10.5·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 1.75·7-s + 0.333·9-s − 1.84·11-s + 0.964·13-s − 0.258·15-s − 1.56·17-s + 1.01·21-s + 1.34·23-s + 0.200·25-s − 0.192·27-s + 1.66·29-s + 0.179·31-s + 1.06·33-s − 0.785·35-s − 0.435·37-s − 0.556·39-s + 1.26·41-s + 0.934·43-s + 0.149·45-s + 0.124·47-s + 2.08·49-s + 0.902·51-s − 0.157·53-s − 0.826·55-s − 1.37·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1860\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 31\)
Sign: $1$
Analytic conductor: \(14.8521\)
Root analytic conductor: \(3.85385\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1860,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9026283345\)
\(L(\frac12)\) \(\approx\) \(0.9026283345\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
31 \( 1 - T \)
good7 \( 1 + 4.64T + 7T^{2} \)
11 \( 1 + 6.12T + 11T^{2} \)
13 \( 1 - 3.47T + 13T^{2} \)
17 \( 1 + 6.44T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 - 6.44T + 23T^{2} \)
29 \( 1 - 8.96T + 29T^{2} \)
37 \( 1 + 2.64T + 37T^{2} \)
41 \( 1 - 8.12T + 41T^{2} \)
43 \( 1 - 6.12T + 43T^{2} \)
47 \( 1 - 0.853T + 47T^{2} \)
53 \( 1 + 1.14T + 53T^{2} \)
59 \( 1 + 10.5T + 59T^{2} \)
61 \( 1 - 1.36T + 61T^{2} \)
67 \( 1 - 6.11T + 67T^{2} \)
71 \( 1 - 3.79T + 71T^{2} \)
73 \( 1 + 5.60T + 73T^{2} \)
79 \( 1 - 11.2T + 79T^{2} \)
83 \( 1 + 10.4T + 83T^{2} \)
89 \( 1 - 9.79T + 89T^{2} \)
97 \( 1 + 17.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.254260181249539032194589033581, −8.650452649905598158600310637576, −7.49995263426666289379004816584, −6.59921874752832423259195253110, −6.19612395598375788745882784606, −5.30833943616629969371929517164, −4.40739500982061174724552559875, −3.13203359390914837788505047810, −2.47207354877037958000623517993, −0.63128021278243154715269417238, 0.63128021278243154715269417238, 2.47207354877037958000623517993, 3.13203359390914837788505047810, 4.40739500982061174724552559875, 5.30833943616629969371929517164, 6.19612395598375788745882784606, 6.59921874752832423259195253110, 7.49995263426666289379004816584, 8.650452649905598158600310637576, 9.254260181249539032194589033581

Graph of the $Z$-function along the critical line