Properties

Label 2-1856-1.1-c3-0-112
Degree $2$
Conductor $1856$
Sign $-1$
Analytic cond. $109.507$
Root an. cond. $10.4645$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.95·3-s − 18.0·5-s + 22.0·7-s − 23.1·9-s − 11.1·11-s + 0.532·13-s − 35.2·15-s + 56.2·17-s − 26.5·19-s + 42.9·21-s + 66.9·23-s + 201.·25-s − 97.9·27-s + 29·29-s + 85.2·31-s − 21.8·33-s − 397.·35-s + 180.·37-s + 1.03·39-s + 46.4·41-s − 212.·43-s + 418.·45-s + 108.·47-s + 141.·49-s + 109.·51-s + 444.·53-s + 202.·55-s + ⋯
L(s)  = 1  + 0.375·3-s − 1.61·5-s + 1.18·7-s − 0.859·9-s − 0.306·11-s + 0.0113·13-s − 0.606·15-s + 0.802·17-s − 0.320·19-s + 0.446·21-s + 0.606·23-s + 1.61·25-s − 0.698·27-s + 0.185·29-s + 0.494·31-s − 0.115·33-s − 1.92·35-s + 0.800·37-s + 0.00426·39-s + 0.176·41-s − 0.753·43-s + 1.38·45-s + 0.336·47-s + 0.413·49-s + 0.301·51-s + 1.15·53-s + 0.495·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1856\)    =    \(2^{6} \cdot 29\)
Sign: $-1$
Analytic conductor: \(109.507\)
Root analytic conductor: \(10.4645\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1856,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
29 \( 1 - 29T \)
good3 \( 1 - 1.95T + 27T^{2} \)
5 \( 1 + 18.0T + 125T^{2} \)
7 \( 1 - 22.0T + 343T^{2} \)
11 \( 1 + 11.1T + 1.33e3T^{2} \)
13 \( 1 - 0.532T + 2.19e3T^{2} \)
17 \( 1 - 56.2T + 4.91e3T^{2} \)
19 \( 1 + 26.5T + 6.85e3T^{2} \)
23 \( 1 - 66.9T + 1.21e4T^{2} \)
31 \( 1 - 85.2T + 2.97e4T^{2} \)
37 \( 1 - 180.T + 5.06e4T^{2} \)
41 \( 1 - 46.4T + 6.89e4T^{2} \)
43 \( 1 + 212.T + 7.95e4T^{2} \)
47 \( 1 - 108.T + 1.03e5T^{2} \)
53 \( 1 - 444.T + 1.48e5T^{2} \)
59 \( 1 + 43.3T + 2.05e5T^{2} \)
61 \( 1 + 33.1T + 2.26e5T^{2} \)
67 \( 1 + 988.T + 3.00e5T^{2} \)
71 \( 1 + 154.T + 3.57e5T^{2} \)
73 \( 1 + 1.03e3T + 3.89e5T^{2} \)
79 \( 1 + 631.T + 4.93e5T^{2} \)
83 \( 1 - 145.T + 5.71e5T^{2} \)
89 \( 1 - 169.T + 7.04e5T^{2} \)
97 \( 1 + 29.4T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.483082048309000243734985182208, −7.71098445744374502238741300591, −7.36984183106351163907489786974, −6.03033874972203679164529705621, −5.02903349503091360701176284812, −4.34732772132768201840577157563, −3.42050403467068755315196522077, −2.59790189896442993629861324399, −1.17095319338044550300336794146, 0, 1.17095319338044550300336794146, 2.59790189896442993629861324399, 3.42050403467068755315196522077, 4.34732772132768201840577157563, 5.02903349503091360701176284812, 6.03033874972203679164529705621, 7.36984183106351163907489786974, 7.71098445744374502238741300591, 8.483082048309000243734985182208

Graph of the $Z$-function along the critical line