L(s) = 1 | − 2-s − 0.618·3-s + 4-s + 0.618·6-s − 1.23·7-s − 8-s − 2.61·9-s − 3.61·11-s − 0.618·12-s − 3.85·13-s + 1.23·14-s + 16-s − 4.47·17-s + 2.61·18-s − 4.47·19-s + 0.763·21-s + 3.61·22-s + 3.85·23-s + 0.618·24-s + 3.85·26-s + 3.47·27-s − 1.23·28-s + 6.32·29-s + 9.61·31-s − 32-s + 2.23·33-s + 4.47·34-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.356·3-s + 0.5·4-s + 0.252·6-s − 0.467·7-s − 0.353·8-s − 0.872·9-s − 1.09·11-s − 0.178·12-s − 1.06·13-s + 0.330·14-s + 0.250·16-s − 1.08·17-s + 0.617·18-s − 1.02·19-s + 0.166·21-s + 0.771·22-s + 0.803·23-s + 0.126·24-s + 0.755·26-s + 0.668·27-s − 0.233·28-s + 1.17·29-s + 1.72·31-s − 0.176·32-s + 0.389·33-s + 0.766·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5195836279\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5195836279\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 5 | \( 1 \) |
| 37 | \( 1 - T \) |
good | 3 | \( 1 + 0.618T + 3T^{2} \) |
| 7 | \( 1 + 1.23T + 7T^{2} \) |
| 11 | \( 1 + 3.61T + 11T^{2} \) |
| 13 | \( 1 + 3.85T + 13T^{2} \) |
| 17 | \( 1 + 4.47T + 17T^{2} \) |
| 19 | \( 1 + 4.47T + 19T^{2} \) |
| 23 | \( 1 - 3.85T + 23T^{2} \) |
| 29 | \( 1 - 6.32T + 29T^{2} \) |
| 31 | \( 1 - 9.61T + 31T^{2} \) |
| 41 | \( 1 - 7.38T + 41T^{2} \) |
| 43 | \( 1 - 0.763T + 43T^{2} \) |
| 47 | \( 1 + 3.23T + 47T^{2} \) |
| 53 | \( 1 - 8.47T + 53T^{2} \) |
| 59 | \( 1 + 9.23T + 59T^{2} \) |
| 61 | \( 1 - 8.38T + 61T^{2} \) |
| 67 | \( 1 - 10.0T + 67T^{2} \) |
| 71 | \( 1 + 14.9T + 71T^{2} \) |
| 73 | \( 1 - 4.09T + 73T^{2} \) |
| 79 | \( 1 - 11.5T + 79T^{2} \) |
| 83 | \( 1 - 5.52T + 83T^{2} \) |
| 89 | \( 1 + 10.4T + 89T^{2} \) |
| 97 | \( 1 + 8.47T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.207007149496274768084771497279, −8.460047583285389607433357308928, −7.85083522820591253615344971463, −6.77693211367059718523087150475, −6.30342451127997648623734366645, −5.23738465172214104059602453053, −4.47617856205482839765141515619, −2.84926902413657059545312335432, −2.42693996546770832138538433496, −0.51467502370781099341159803573,
0.51467502370781099341159803573, 2.42693996546770832138538433496, 2.84926902413657059545312335432, 4.47617856205482839765141515619, 5.23738465172214104059602453053, 6.30342451127997648623734366645, 6.77693211367059718523087150475, 7.85083522820591253615344971463, 8.460047583285389607433357308928, 9.207007149496274768084771497279