L(s) = 1 | + (0.647 − 1.12i)2-s + (−0.366 + 1.36i)3-s + (0.161 + 0.279i)4-s + (0.213 − 2.22i)5-s + (1.29 + 1.29i)6-s + (0.0333 − 0.124i)7-s + 3.00·8-s + (0.861 + 0.497i)9-s + (−2.35 − 1.68i)10-s − 2.33i·11-s + (−0.440 + 0.118i)12-s + (2.86 + 4.96i)13-s + (−0.117 − 0.117i)14-s + (2.96 + 1.10i)15-s + (1.62 − 2.81i)16-s + (−4.88 − 2.81i)17-s + ⋯ |
L(s) = 1 | + (0.457 − 0.793i)2-s + (−0.211 + 0.789i)3-s + (0.0805 + 0.139i)4-s + (0.0953 − 0.995i)5-s + (0.529 + 0.529i)6-s + (0.0125 − 0.0469i)7-s + 1.06·8-s + (0.287 + 0.165i)9-s + (−0.745 − 0.531i)10-s − 0.704i·11-s + (−0.127 + 0.0340i)12-s + (0.795 + 1.37i)13-s + (−0.0315 − 0.0315i)14-s + (0.765 + 0.285i)15-s + (0.406 − 0.704i)16-s + (−1.18 − 0.683i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.909 + 0.415i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.909 + 0.415i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.50819 - 0.327730i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.50819 - 0.327730i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.213 + 2.22i)T \) |
| 37 | \( 1 + (-1.97 + 5.75i)T \) |
good | 2 | \( 1 + (-0.647 + 1.12i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (0.366 - 1.36i)T + (-2.59 - 1.5i)T^{2} \) |
| 7 | \( 1 + (-0.0333 + 0.124i)T + (-6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + 2.33iT - 11T^{2} \) |
| 13 | \( 1 + (-2.86 - 4.96i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (4.88 + 2.81i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.92 - 0.516i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + 9.37T + 23T^{2} \) |
| 29 | \( 1 + (4.17 + 4.17i)T + 29iT^{2} \) |
| 31 | \( 1 + (2.28 - 2.28i)T - 31iT^{2} \) |
| 41 | \( 1 + (-5.79 + 3.34i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + 9.62T + 43T^{2} \) |
| 47 | \( 1 + (-7.16 - 7.16i)T + 47iT^{2} \) |
| 53 | \( 1 + (-0.612 - 2.28i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-1.04 - 3.88i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-1.21 - 0.326i)T + (52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (6.26 + 1.67i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (3.22 + 5.57i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (2.20 + 2.20i)T + 73iT^{2} \) |
| 79 | \( 1 + (-3.38 - 0.906i)T + (68.4 + 39.5i)T^{2} \) |
| 83 | \( 1 + (-1.44 - 5.39i)T + (-71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + (3.70 - 0.992i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + 3.93iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.38133144214664639590511569591, −11.51810312095470414828948110744, −10.87723862099316603341098366158, −9.667553248491369884964147131907, −8.800862563979873134090795629596, −7.49272658403424665692324598077, −5.83764944654824884889940205163, −4.42176374693340361211134894725, −3.95890753261232647499249438674, −1.92219325224104603844176171827,
1.93495653028011217896089890772, 3.95431761965065674085441713777, 5.67126406315683137467916166954, 6.41473284758746470946030829658, 7.23227386900222280649156582086, 8.078290452843678363519765362416, 9.959272563315679332145329340416, 10.67760193045856282689027250144, 11.77916781494807049347571634816, 13.07478788480144069593519918123