L(s) = 1 | − 2-s + (1 − i)3-s − 4-s + (−1 + 2i)5-s + (−1 + i)6-s + (−3 + 3i)7-s + 3·8-s + i·9-s + (1 − 2i)10-s + 2i·11-s + (−1 + i)12-s + 2·13-s + (3 − 3i)14-s + (1 + 3i)15-s − 16-s − 4i·17-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (0.577 − 0.577i)3-s − 0.5·4-s + (−0.447 + 0.894i)5-s + (−0.408 + 0.408i)6-s + (−1.13 + 1.13i)7-s + 1.06·8-s + 0.333i·9-s + (0.316 − 0.632i)10-s + 0.603i·11-s + (−0.288 + 0.288i)12-s + 0.554·13-s + (0.801 − 0.801i)14-s + (0.258 + 0.774i)15-s − 0.250·16-s − 0.970i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0158 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0158 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.416790 + 0.423470i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.416790 + 0.423470i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (1 - 2i)T \) |
| 37 | \( 1 + (1 + 6i)T \) |
good | 2 | \( 1 + T + 2T^{2} \) |
| 3 | \( 1 + (-1 + i)T - 3iT^{2} \) |
| 7 | \( 1 + (3 - 3i)T - 7iT^{2} \) |
| 11 | \( 1 - 2iT - 11T^{2} \) |
| 13 | \( 1 - 2T + 13T^{2} \) |
| 17 | \( 1 + 4iT - 17T^{2} \) |
| 19 | \( 1 + (-3 - 3i)T + 19iT^{2} \) |
| 23 | \( 1 + 8T + 23T^{2} \) |
| 29 | \( 1 + (7 - 7i)T - 29iT^{2} \) |
| 31 | \( 1 + (-3 - 3i)T + 31iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 - 12T + 43T^{2} \) |
| 47 | \( 1 + (-5 + 5i)T - 47iT^{2} \) |
| 53 | \( 1 + (3 + 3i)T + 53iT^{2} \) |
| 59 | \( 1 + (-7 - 7i)T + 59iT^{2} \) |
| 61 | \( 1 + (-1 - i)T + 61iT^{2} \) |
| 67 | \( 1 + (-3 - 3i)T + 67iT^{2} \) |
| 71 | \( 1 - 8T + 71T^{2} \) |
| 73 | \( 1 + (-1 + i)T - 73iT^{2} \) |
| 79 | \( 1 + (-3 - 3i)T + 79iT^{2} \) |
| 83 | \( 1 + (5 + 5i)T + 83iT^{2} \) |
| 89 | \( 1 + (-5 + 5i)T - 89iT^{2} \) |
| 97 | \( 1 - 8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.83700396025873518719060313011, −11.99992072438835276443555855726, −10.62904111038075452920472992408, −9.680822224664481339355704274917, −8.862834497522444094829440373628, −7.80613740742579314166288228579, −7.04349833318338023985203545872, −5.59419844091067508860520241629, −3.67341265117217924705438134962, −2.29561026262457437442647611969,
0.65300052429205403887487345028, 3.72657409626789884374060522575, 4.18449371322501977599649225864, 6.06537701611764299515641395379, 7.68277854882150940198308918500, 8.465687753732322302234960146005, 9.481537583834271805720213323745, 9.886485680215773428715856678466, 11.08622767691944824133600431390, 12.53421607436119648825260226143