L(s) = 1 | + i·2-s + (−1 + i)3-s + 4-s + (−2 − i)5-s + (−1 − i)6-s + (−3 + 3i)7-s + 3i·8-s + i·9-s + (1 − 2i)10-s − 2i·11-s + (−1 + i)12-s + 2i·13-s + (−3 − 3i)14-s + (3 − i)15-s − 16-s + 4·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + (−0.577 + 0.577i)3-s + 0.5·4-s + (−0.894 − 0.447i)5-s + (−0.408 − 0.408i)6-s + (−1.13 + 1.13i)7-s + 1.06i·8-s + 0.333i·9-s + (0.316 − 0.632i)10-s − 0.603i·11-s + (−0.288 + 0.288i)12-s + 0.554i·13-s + (−0.801 − 0.801i)14-s + (0.774 − 0.258i)15-s − 0.250·16-s + 0.970·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.887 - 0.461i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.887 - 0.461i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.186275 + 0.761936i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.186275 + 0.761936i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (2 + i)T \) |
| 37 | \( 1 + (-6 - i)T \) |
good | 2 | \( 1 - iT - 2T^{2} \) |
| 3 | \( 1 + (1 - i)T - 3iT^{2} \) |
| 7 | \( 1 + (3 - 3i)T - 7iT^{2} \) |
| 11 | \( 1 + 2iT - 11T^{2} \) |
| 13 | \( 1 - 2iT - 13T^{2} \) |
| 17 | \( 1 - 4T + 17T^{2} \) |
| 19 | \( 1 + (3 - 3i)T - 19iT^{2} \) |
| 23 | \( 1 + 8iT - 23T^{2} \) |
| 29 | \( 1 + (-7 - 7i)T + 29iT^{2} \) |
| 31 | \( 1 + (-3 + 3i)T - 31iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 - 12iT - 43T^{2} \) |
| 47 | \( 1 + (-5 + 5i)T - 47iT^{2} \) |
| 53 | \( 1 + (3 + 3i)T + 53iT^{2} \) |
| 59 | \( 1 + (7 - 7i)T - 59iT^{2} \) |
| 61 | \( 1 + (-1 + i)T - 61iT^{2} \) |
| 67 | \( 1 + (3 + 3i)T + 67iT^{2} \) |
| 71 | \( 1 - 8T + 71T^{2} \) |
| 73 | \( 1 + (1 - i)T - 73iT^{2} \) |
| 79 | \( 1 + (3 - 3i)T - 79iT^{2} \) |
| 83 | \( 1 + (5 + 5i)T + 83iT^{2} \) |
| 89 | \( 1 + (5 + 5i)T + 89iT^{2} \) |
| 97 | \( 1 + 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.68622784951561515177893531225, −12.04471604417061927192935491645, −11.15856402620335126794905674713, −10.13784840830060668236522434062, −8.755790042292369064489530030519, −8.006684532421444278784206510283, −6.53218383237364485054161855706, −5.79875921088286720469674759935, −4.60608325564846972986619446651, −2.89122140575968583395944552281,
0.75401270737500311514487533493, 3.04597537633662380246768635930, 4.00693683997329616539485261832, 6.18992396753207268461596818254, 7.01375535963790216563019695725, 7.64221805809677080574720146986, 9.685110375655533509715451054863, 10.40888189373920789067404749174, 11.32049532116622859071951103366, 12.19097081145056866600852743597