L(s) = 1 | − 2-s + (1 + i)3-s − 4-s + (−1 − 2i)5-s + (−1 − i)6-s + (−3 − 3i)7-s + 3·8-s − i·9-s + (1 + 2i)10-s − 2i·11-s + (−1 − i)12-s + 2·13-s + (3 + 3i)14-s + (1 − 3i)15-s − 16-s + 4i·17-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (0.577 + 0.577i)3-s − 0.5·4-s + (−0.447 − 0.894i)5-s + (−0.408 − 0.408i)6-s + (−1.13 − 1.13i)7-s + 1.06·8-s − 0.333i·9-s + (0.316 + 0.632i)10-s − 0.603i·11-s + (−0.288 − 0.288i)12-s + 0.554·13-s + (0.801 + 0.801i)14-s + (0.258 − 0.774i)15-s − 0.250·16-s + 0.970i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0158 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0158 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.416790 - 0.423470i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.416790 - 0.423470i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (1 + 2i)T \) |
| 37 | \( 1 + (1 - 6i)T \) |
good | 2 | \( 1 + T + 2T^{2} \) |
| 3 | \( 1 + (-1 - i)T + 3iT^{2} \) |
| 7 | \( 1 + (3 + 3i)T + 7iT^{2} \) |
| 11 | \( 1 + 2iT - 11T^{2} \) |
| 13 | \( 1 - 2T + 13T^{2} \) |
| 17 | \( 1 - 4iT - 17T^{2} \) |
| 19 | \( 1 + (-3 + 3i)T - 19iT^{2} \) |
| 23 | \( 1 + 8T + 23T^{2} \) |
| 29 | \( 1 + (7 + 7i)T + 29iT^{2} \) |
| 31 | \( 1 + (-3 + 3i)T - 31iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 - 12T + 43T^{2} \) |
| 47 | \( 1 + (-5 - 5i)T + 47iT^{2} \) |
| 53 | \( 1 + (3 - 3i)T - 53iT^{2} \) |
| 59 | \( 1 + (-7 + 7i)T - 59iT^{2} \) |
| 61 | \( 1 + (-1 + i)T - 61iT^{2} \) |
| 67 | \( 1 + (-3 + 3i)T - 67iT^{2} \) |
| 71 | \( 1 - 8T + 71T^{2} \) |
| 73 | \( 1 + (-1 - i)T + 73iT^{2} \) |
| 79 | \( 1 + (-3 + 3i)T - 79iT^{2} \) |
| 83 | \( 1 + (5 - 5i)T - 83iT^{2} \) |
| 89 | \( 1 + (-5 - 5i)T + 89iT^{2} \) |
| 97 | \( 1 + 8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.53421607436119648825260226143, −11.08622767691944824133600431390, −9.886485680215773428715856678466, −9.481537583834271805720213323745, −8.465687753732322302234960146005, −7.68277854882150940198308918500, −6.06537701611764299515641395379, −4.18449371322501977599649225864, −3.72657409626789884374060522575, −0.65300052429205403887487345028,
2.29561026262457437442647611969, 3.67341265117217924705438134962, 5.59419844091067508860520241629, 7.04349833318338023985203545872, 7.80613740742579314166288228579, 8.862834497522444094829440373628, 9.680822224664481339355704274917, 10.62904111038075452920472992408, 11.99992072438835276443555855726, 12.83700396025873518719060313011