| L(s) = 1 | + (−0.747 − 1.29i)2-s + (−0.579 − 2.16i)3-s + (−0.117 + 0.203i)4-s + (−0.664 + 2.13i)5-s + (−2.36 + 2.36i)6-s + (−0.962 − 3.59i)7-s − 2.63·8-s + (−1.74 + 1.00i)9-s + (3.26 − 0.734i)10-s + 0.0710i·11-s + (0.507 + 0.135i)12-s + (−0.360 + 0.624i)13-s + (−3.93 + 3.93i)14-s + (5.00 + 0.200i)15-s + (2.20 + 3.82i)16-s + (−2.10 + 1.21i)17-s + ⋯ |
| L(s) = 1 | + (−0.528 − 0.915i)2-s + (−0.334 − 1.24i)3-s + (−0.0586 + 0.101i)4-s + (−0.297 + 0.954i)5-s + (−0.965 + 0.965i)6-s + (−0.363 − 1.35i)7-s − 0.933·8-s + (−0.580 + 0.334i)9-s + (1.03 − 0.232i)10-s + 0.0214i·11-s + (0.146 + 0.0392i)12-s + (−0.0999 + 0.173i)13-s + (−1.05 + 1.05i)14-s + (1.29 + 0.0518i)15-s + (0.551 + 0.955i)16-s + (−0.509 + 0.294i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.936 - 0.350i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.936 - 0.350i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.109318 + 0.604714i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.109318 + 0.604714i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 + (0.664 - 2.13i)T \) |
| 37 | \( 1 + (-0.352 + 6.07i)T \) |
| good | 2 | \( 1 + (0.747 + 1.29i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (0.579 + 2.16i)T + (-2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (0.962 + 3.59i)T + (-6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 - 0.0710iT - 11T^{2} \) |
| 13 | \( 1 + (0.360 - 0.624i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2.10 - 1.21i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.55 + 0.415i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 - 5.82T + 23T^{2} \) |
| 29 | \( 1 + (-4.82 + 4.82i)T - 29iT^{2} \) |
| 31 | \( 1 + (6.73 + 6.73i)T + 31iT^{2} \) |
| 41 | \( 1 + (4.99 + 2.88i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 - 9.26T + 43T^{2} \) |
| 47 | \( 1 + (-1.36 + 1.36i)T - 47iT^{2} \) |
| 53 | \( 1 + (2.81 - 10.5i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (-0.359 + 1.34i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-10.5 + 2.82i)T + (52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (0.313 - 0.0839i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (0.252 - 0.438i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-3.91 + 3.91i)T - 73iT^{2} \) |
| 79 | \( 1 + (6.41 - 1.71i)T + (68.4 - 39.5i)T^{2} \) |
| 83 | \( 1 + (-3.35 + 12.5i)T + (-71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (-15.8 - 4.23i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 - 15.4iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.85147637280977392289157751224, −11.03638237388658131773071233217, −10.44024530180411921030824469777, −9.320590860788457212463928967629, −7.67398419004650568121631169674, −6.97497731993799421836329656238, −6.12492019762431460607885690994, −3.80222138568791120937673515120, −2.31777460483163660874347786954, −0.67717455472085654311900733371,
3.21448441206847729562508691653, 4.92118431274588682690269633571, 5.58778109626876504155877089516, 6.97713597727139687158017839485, 8.472572715796207125836258804912, 8.997481308010465701347107314677, 9.740004697140313932032829270002, 11.18108883559652852394290841232, 12.13648882544792194657328339250, 12.90102070610351067938804423174