| L(s) = 1 | + (−0.437 − 0.757i)2-s + (−0.437 − 1.63i)3-s + (0.616 − 1.06i)4-s + (1.43 − 1.71i)5-s + (−1.04 + 1.04i)6-s + (0.339 + 1.26i)7-s − 2.83·8-s + (0.124 − 0.0716i)9-s + (−1.92 − 0.332i)10-s + 3.57i·11-s + (−2.01 − 0.539i)12-s + (0.404 − 0.700i)13-s + (0.812 − 0.812i)14-s + (−3.43 − 1.58i)15-s + (0.00479 + 0.00830i)16-s + (−3.21 + 1.85i)17-s + ⋯ |
| L(s) = 1 | + (−0.309 − 0.535i)2-s + (−0.252 − 0.942i)3-s + (0.308 − 0.534i)4-s + (0.639 − 0.768i)5-s + (−0.427 + 0.427i)6-s + (0.128 + 0.479i)7-s − 1.00·8-s + (0.0413 − 0.0238i)9-s + (−0.609 − 0.105i)10-s + 1.07i·11-s + (−0.581 − 0.155i)12-s + (0.112 − 0.194i)13-s + (0.217 − 0.217i)14-s + (−0.885 − 0.409i)15-s + (0.00119 + 0.00207i)16-s + (−0.780 + 0.450i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.632 + 0.774i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.632 + 0.774i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.464006 - 0.978618i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.464006 - 0.978618i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 + (-1.43 + 1.71i)T \) |
| 37 | \( 1 + (-6.08 + 0.0421i)T \) |
| good | 2 | \( 1 + (0.437 + 0.757i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (0.437 + 1.63i)T + (-2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (-0.339 - 1.26i)T + (-6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 - 3.57iT - 11T^{2} \) |
| 13 | \( 1 + (-0.404 + 0.700i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (3.21 - 1.85i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.17 + 0.315i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 - 0.939T + 23T^{2} \) |
| 29 | \( 1 + (-0.522 + 0.522i)T - 29iT^{2} \) |
| 31 | \( 1 + (-7.77 - 7.77i)T + 31iT^{2} \) |
| 41 | \( 1 + (-0.709 - 0.409i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + 0.435T + 43T^{2} \) |
| 47 | \( 1 + (4.99 - 4.99i)T - 47iT^{2} \) |
| 53 | \( 1 + (-1.59 + 5.96i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (-1.62 + 6.05i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (13.0 - 3.50i)T + (52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (-13.0 + 3.49i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (0.416 - 0.722i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.94 + 2.94i)T - 73iT^{2} \) |
| 79 | \( 1 + (9.16 - 2.45i)T + (68.4 - 39.5i)T^{2} \) |
| 83 | \( 1 + (1.75 - 6.56i)T + (-71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (14.3 + 3.85i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 - 1.86iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.34740521659219071608697537017, −11.44251928846197235369011024313, −10.17928352402362136526296795757, −9.439949310358440859761361299473, −8.344227772438993159699633547664, −6.85713864956382962110659996020, −6.04354370383742547859989002348, −4.81013412277460117218827226561, −2.32523679990221126726326860455, −1.27695578233077420487712342411,
2.83413753071371264286780873586, 4.16587822478373246160820308123, 5.75995880409861877806839794397, 6.72605778404885567875823536152, 7.78848973145225113326057118755, 9.034762188277803394578063043225, 9.964478860128394589551881468055, 10.99188660292802788365055751062, 11.54528540731576398653965972613, 13.19196625711088747137218747482