Properties

Label 2-185-1.1-c1-0-7
Degree $2$
Conductor $185$
Sign $1$
Analytic cond. $1.47723$
Root an. cond. $1.21541$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.72·2-s − 2.29·3-s + 5.41·4-s − 5-s − 6.24·6-s + 3.82·7-s + 9.30·8-s + 2.25·9-s − 2.72·10-s − 4.41·11-s − 12.4·12-s − 3.67·13-s + 10.4·14-s + 2.29·15-s + 14.5·16-s − 2.28·17-s + 6.14·18-s − 2.39·19-s − 5.41·20-s − 8.77·21-s − 12.0·22-s − 0.265·23-s − 21.3·24-s + 25-s − 10.0·26-s + 1.70·27-s + 20.7·28-s + ⋯
L(s)  = 1  + 1.92·2-s − 1.32·3-s + 2.70·4-s − 0.447·5-s − 2.54·6-s + 1.44·7-s + 3.29·8-s + 0.752·9-s − 0.861·10-s − 1.33·11-s − 3.58·12-s − 1.01·13-s + 2.78·14-s + 0.592·15-s + 3.62·16-s − 0.554·17-s + 1.44·18-s − 0.548·19-s − 1.21·20-s − 1.91·21-s − 2.56·22-s − 0.0553·23-s − 4.35·24-s + 0.200·25-s − 1.96·26-s + 0.327·27-s + 3.91·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(185\)    =    \(5 \cdot 37\)
Sign: $1$
Analytic conductor: \(1.47723\)
Root analytic conductor: \(1.21541\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 185,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.308398003\)
\(L(\frac12)\) \(\approx\) \(2.308398003\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
37 \( 1 - T \)
good2 \( 1 - 2.72T + 2T^{2} \)
3 \( 1 + 2.29T + 3T^{2} \)
7 \( 1 - 3.82T + 7T^{2} \)
11 \( 1 + 4.41T + 11T^{2} \)
13 \( 1 + 3.67T + 13T^{2} \)
17 \( 1 + 2.28T + 17T^{2} \)
19 \( 1 + 2.39T + 19T^{2} \)
23 \( 1 + 0.265T + 23T^{2} \)
29 \( 1 + 6.58T + 29T^{2} \)
31 \( 1 - 2.34T + 31T^{2} \)
41 \( 1 + 4.41T + 41T^{2} \)
43 \( 1 - 7.71T + 43T^{2} \)
47 \( 1 - 10.9T + 47T^{2} \)
53 \( 1 + 0.109T + 53T^{2} \)
59 \( 1 + 2.00T + 59T^{2} \)
61 \( 1 - 3.96T + 61T^{2} \)
67 \( 1 - 6.80T + 67T^{2} \)
71 \( 1 + 5.79T + 71T^{2} \)
73 \( 1 + 0.140T + 73T^{2} \)
79 \( 1 + 6.62T + 79T^{2} \)
83 \( 1 - 13.9T + 83T^{2} \)
89 \( 1 - 14.8T + 89T^{2} \)
97 \( 1 + 8.94T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.46255944100228155947207988645, −11.84267740631140168356801220595, −11.01565153991037924670571636370, −10.60771610289190051814467976226, −7.918525139150551152019140953404, −7.05876834498019419392193677384, −5.71100562208432374945143308111, −5.04539116693120770066126784883, −4.33455911454823304428546661972, −2.34697204956410755155792042680, 2.34697204956410755155792042680, 4.33455911454823304428546661972, 5.04539116693120770066126784883, 5.71100562208432374945143308111, 7.05876834498019419392193677384, 7.918525139150551152019140953404, 10.60771610289190051814467976226, 11.01565153991037924670571636370, 11.84267740631140168356801220595, 12.46255944100228155947207988645

Graph of the $Z$-function along the critical line