Properties

Label 2-1840-460.179-c0-0-0
Degree $2$
Conductor $1840$
Sign $0.394 - 0.918i$
Analytic cond. $0.918279$
Root an. cond. $0.958269$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.368 + 0.425i)3-s + (0.142 − 0.989i)5-s + (0.755 + 1.65i)7-s + (0.0971 + 0.675i)9-s + (0.368 + 0.425i)15-s + (−0.983 − 0.288i)21-s + (−0.281 + 0.959i)23-s + (−0.959 − 0.281i)25-s + (−0.797 − 0.512i)27-s + (−0.239 + 0.153i)29-s + (1.74 − 0.512i)35-s + (0.118 − 0.822i)41-s + (−0.708 + 0.817i)43-s + 0.682·45-s + 1.97·47-s + ⋯
L(s)  = 1  + (−0.368 + 0.425i)3-s + (0.142 − 0.989i)5-s + (0.755 + 1.65i)7-s + (0.0971 + 0.675i)9-s + (0.368 + 0.425i)15-s + (−0.983 − 0.288i)21-s + (−0.281 + 0.959i)23-s + (−0.959 − 0.281i)25-s + (−0.797 − 0.512i)27-s + (−0.239 + 0.153i)29-s + (1.74 − 0.512i)35-s + (0.118 − 0.822i)41-s + (−0.708 + 0.817i)43-s + 0.682·45-s + 1.97·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.394 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.394 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1840\)    =    \(2^{4} \cdot 5 \cdot 23\)
Sign: $0.394 - 0.918i$
Analytic conductor: \(0.918279\)
Root analytic conductor: \(0.958269\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1840} (639, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1840,\ (\ :0),\ 0.394 - 0.918i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.077170880\)
\(L(\frac12)\) \(\approx\) \(1.077170880\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (-0.142 + 0.989i)T \)
23 \( 1 + (0.281 - 0.959i)T \)
good3 \( 1 + (0.368 - 0.425i)T + (-0.142 - 0.989i)T^{2} \)
7 \( 1 + (-0.755 - 1.65i)T + (-0.654 + 0.755i)T^{2} \)
11 \( 1 + (-0.841 + 0.540i)T^{2} \)
13 \( 1 + (0.654 + 0.755i)T^{2} \)
17 \( 1 + (-0.415 + 0.909i)T^{2} \)
19 \( 1 + (-0.415 - 0.909i)T^{2} \)
29 \( 1 + (0.239 - 0.153i)T + (0.415 - 0.909i)T^{2} \)
31 \( 1 + (0.142 - 0.989i)T^{2} \)
37 \( 1 + (0.959 - 0.281i)T^{2} \)
41 \( 1 + (-0.118 + 0.822i)T + (-0.959 - 0.281i)T^{2} \)
43 \( 1 + (0.708 - 0.817i)T + (-0.142 - 0.989i)T^{2} \)
47 \( 1 - 1.97T + T^{2} \)
53 \( 1 + (0.654 - 0.755i)T^{2} \)
59 \( 1 + (0.654 + 0.755i)T^{2} \)
61 \( 1 + (-1.10 - 1.27i)T + (-0.142 + 0.989i)T^{2} \)
67 \( 1 + (-1.45 - 0.425i)T + (0.841 + 0.540i)T^{2} \)
71 \( 1 + (-0.841 - 0.540i)T^{2} \)
73 \( 1 + (-0.415 - 0.909i)T^{2} \)
79 \( 1 + (0.654 + 0.755i)T^{2} \)
83 \( 1 + (0.215 + 1.49i)T + (-0.959 + 0.281i)T^{2} \)
89 \( 1 + (-1.25 + 1.45i)T + (-0.142 - 0.989i)T^{2} \)
97 \( 1 + (0.959 + 0.281i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.450668173526150219153090530597, −8.814290415004307482558018255623, −8.215816186543718893773103577467, −7.42709115399040180457683998106, −5.94644023680898749262205412073, −5.46387300605167289060296973674, −4.93291010659715331857775622987, −4.01938730169843131660101588151, −2.48486253040365526479663261461, −1.64483266637209398094707243886, 0.897360344945198490080332165477, 2.18184172316727566515777213809, 3.57034500134532114598988148888, 4.15737103240940645977659628334, 5.31021965817142309203060138234, 6.43656872978160377755077582656, 6.85607473286559386165761539407, 7.55248621047181104399830534478, 8.258720810831851249103239803839, 9.493414204515425724296789897965

Graph of the $Z$-function along the critical line