Properties

Label 2-1840-1.1-c3-0-60
Degree $2$
Conductor $1840$
Sign $1$
Analytic cond. $108.563$
Root an. cond. $10.4193$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5·5-s + 32·7-s − 26·9-s + 30·11-s + 19·13-s + 5·15-s − 60·17-s + 58·19-s + 32·21-s − 23·23-s + 25·25-s − 53·27-s + 85·29-s + 65·31-s + 30·33-s + 160·35-s − 34·37-s + 19·39-s + 143·41-s + 332·43-s − 130·45-s + 561·47-s + 681·49-s − 60·51-s − 422·53-s + 150·55-s + ⋯
L(s)  = 1  + 0.192·3-s + 0.447·5-s + 1.72·7-s − 0.962·9-s + 0.822·11-s + 0.405·13-s + 0.0860·15-s − 0.856·17-s + 0.700·19-s + 0.332·21-s − 0.208·23-s + 1/5·25-s − 0.377·27-s + 0.544·29-s + 0.376·31-s + 0.158·33-s + 0.772·35-s − 0.151·37-s + 0.0780·39-s + 0.544·41-s + 1.17·43-s − 0.430·45-s + 1.74·47-s + 1.98·49-s − 0.164·51-s − 1.09·53-s + 0.367·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1840\)    =    \(2^{4} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(108.563\)
Root analytic conductor: \(10.4193\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1840,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.453462533\)
\(L(\frac12)\) \(\approx\) \(3.453462533\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - p T \)
23 \( 1 + p T \)
good3 \( 1 - T + p^{3} T^{2} \)
7 \( 1 - 32 T + p^{3} T^{2} \)
11 \( 1 - 30 T + p^{3} T^{2} \)
13 \( 1 - 19 T + p^{3} T^{2} \)
17 \( 1 + 60 T + p^{3} T^{2} \)
19 \( 1 - 58 T + p^{3} T^{2} \)
29 \( 1 - 85 T + p^{3} T^{2} \)
31 \( 1 - 65 T + p^{3} T^{2} \)
37 \( 1 + 34 T + p^{3} T^{2} \)
41 \( 1 - 143 T + p^{3} T^{2} \)
43 \( 1 - 332 T + p^{3} T^{2} \)
47 \( 1 - 561 T + p^{3} T^{2} \)
53 \( 1 + 422 T + p^{3} T^{2} \)
59 \( 1 + 392 T + p^{3} T^{2} \)
61 \( 1 + 246 T + p^{3} T^{2} \)
67 \( 1 + 894 T + p^{3} T^{2} \)
71 \( 1 - 737 T + p^{3} T^{2} \)
73 \( 1 - 1041 T + p^{3} T^{2} \)
79 \( 1 + 1114 T + p^{3} T^{2} \)
83 \( 1 - 936 T + p^{3} T^{2} \)
89 \( 1 - 824 T + p^{3} T^{2} \)
97 \( 1 + 868 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.907659013871024295625418555609, −8.168981806390034961771511967804, −7.50132476529534977659829415326, −6.38892627740135222072948232582, −5.66500515685318688609639389052, −4.81077116996280810788760225782, −4.02952132633300369118540734099, −2.76094642827822378265928538778, −1.84862534409596015138624299216, −0.912184399092809719541867253753, 0.912184399092809719541867253753, 1.84862534409596015138624299216, 2.76094642827822378265928538778, 4.02952132633300369118540734099, 4.81077116996280810788760225782, 5.66500515685318688609639389052, 6.38892627740135222072948232582, 7.50132476529534977659829415326, 8.168981806390034961771511967804, 8.907659013871024295625418555609

Graph of the $Z$-function along the critical line