Properties

Label 2-1840-1.1-c3-0-105
Degree $2$
Conductor $1840$
Sign $-1$
Analytic cond. $108.563$
Root an. cond. $10.4193$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·3-s − 5·5-s − 12·7-s − 2·9-s − 22·11-s + 19·13-s − 25·15-s + 96·17-s + 98·19-s − 60·21-s − 23·23-s + 25·25-s − 145·27-s − 227·29-s + 285·31-s − 110·33-s + 60·35-s − 398·37-s + 95·39-s + 271·41-s + 100·43-s + 10·45-s + 285·47-s − 199·49-s + 480·51-s + 18·53-s + 110·55-s + ⋯
L(s)  = 1  + 0.962·3-s − 0.447·5-s − 0.647·7-s − 0.0740·9-s − 0.603·11-s + 0.405·13-s − 0.430·15-s + 1.36·17-s + 1.18·19-s − 0.623·21-s − 0.208·23-s + 1/5·25-s − 1.03·27-s − 1.45·29-s + 1.65·31-s − 0.580·33-s + 0.289·35-s − 1.76·37-s + 0.390·39-s + 1.03·41-s + 0.354·43-s + 0.0331·45-s + 0.884·47-s − 0.580·49-s + 1.31·51-s + 0.0466·53-s + 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1840 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1840\)    =    \(2^{4} \cdot 5 \cdot 23\)
Sign: $-1$
Analytic conductor: \(108.563\)
Root analytic conductor: \(10.4193\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1840,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + p T \)
23 \( 1 + p T \)
good3 \( 1 - 5 T + p^{3} T^{2} \)
7 \( 1 + 12 T + p^{3} T^{2} \)
11 \( 1 + 2 p T + p^{3} T^{2} \)
13 \( 1 - 19 T + p^{3} T^{2} \)
17 \( 1 - 96 T + p^{3} T^{2} \)
19 \( 1 - 98 T + p^{3} T^{2} \)
29 \( 1 + 227 T + p^{3} T^{2} \)
31 \( 1 - 285 T + p^{3} T^{2} \)
37 \( 1 + 398 T + p^{3} T^{2} \)
41 \( 1 - 271 T + p^{3} T^{2} \)
43 \( 1 - 100 T + p^{3} T^{2} \)
47 \( 1 - 285 T + p^{3} T^{2} \)
53 \( 1 - 18 T + p^{3} T^{2} \)
59 \( 1 - 352 T + p^{3} T^{2} \)
61 \( 1 + 478 T + p^{3} T^{2} \)
67 \( 1 + 330 T + p^{3} T^{2} \)
71 \( 1 + 835 T + p^{3} T^{2} \)
73 \( 1 + 1127 T + p^{3} T^{2} \)
79 \( 1 + 322 T + p^{3} T^{2} \)
83 \( 1 + 572 T + p^{3} T^{2} \)
89 \( 1 + 504 T + p^{3} T^{2} \)
97 \( 1 - 1712 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.483358440051538290155098492466, −7.70492238890796630857482571646, −7.28343357376945136303826436885, −5.98756872020852104863216489607, −5.35978095625069251181126707025, −4.05733444443759213162180763218, −3.24708808133730091016459790816, −2.76051227740709672765791072043, −1.34365631425879663511144373306, 0, 1.34365631425879663511144373306, 2.76051227740709672765791072043, 3.24708808133730091016459790816, 4.05733444443759213162180763218, 5.35978095625069251181126707025, 5.98756872020852104863216489607, 7.28343357376945136303826436885, 7.70492238890796630857482571646, 8.483358440051538290155098492466

Graph of the $Z$-function along the critical line