Properties

Label 2-184-1.1-c1-0-2
Degree $2$
Conductor $184$
Sign $1$
Analytic cond. $1.46924$
Root an. cond. $1.21212$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.56·3-s + 2·5-s − 0.561·9-s − 3.12·11-s + 0.438·13-s + 3.12·15-s + 5.12·17-s − 3.12·19-s − 23-s − 25-s − 5.56·27-s + 3.56·29-s − 2.43·31-s − 4.87·33-s + 8.24·37-s + 0.684·39-s − 9.80·41-s − 8·43-s − 1.12·45-s − 0.684·47-s − 7·49-s + 8·51-s + 2·53-s − 6.24·55-s − 4.87·57-s + 10.2·59-s − 4.24·61-s + ⋯
L(s)  = 1  + 0.901·3-s + 0.894·5-s − 0.187·9-s − 0.941·11-s + 0.121·13-s + 0.806·15-s + 1.24·17-s − 0.716·19-s − 0.208·23-s − 0.200·25-s − 1.07·27-s + 0.661·29-s − 0.437·31-s − 0.848·33-s + 1.35·37-s + 0.109·39-s − 1.53·41-s − 1.21·43-s − 0.167·45-s − 0.0998·47-s − 49-s + 1.12·51-s + 0.274·53-s − 0.842·55-s − 0.645·57-s + 1.33·59-s − 0.543·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(184\)    =    \(2^{3} \cdot 23\)
Sign: $1$
Analytic conductor: \(1.46924\)
Root analytic conductor: \(1.21212\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{184} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 184,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.592191306\)
\(L(\frac12)\) \(\approx\) \(1.592191306\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 + T \)
good3 \( 1 - 1.56T + 3T^{2} \)
5 \( 1 - 2T + 5T^{2} \)
7 \( 1 + 7T^{2} \)
11 \( 1 + 3.12T + 11T^{2} \)
13 \( 1 - 0.438T + 13T^{2} \)
17 \( 1 - 5.12T + 17T^{2} \)
19 \( 1 + 3.12T + 19T^{2} \)
29 \( 1 - 3.56T + 29T^{2} \)
31 \( 1 + 2.43T + 31T^{2} \)
37 \( 1 - 8.24T + 37T^{2} \)
41 \( 1 + 9.80T + 41T^{2} \)
43 \( 1 + 8T + 43T^{2} \)
47 \( 1 + 0.684T + 47T^{2} \)
53 \( 1 - 2T + 53T^{2} \)
59 \( 1 - 10.2T + 59T^{2} \)
61 \( 1 + 4.24T + 61T^{2} \)
67 \( 1 - 3.12T + 67T^{2} \)
71 \( 1 - 13.5T + 71T^{2} \)
73 \( 1 + 14.6T + 73T^{2} \)
79 \( 1 - 3.12T + 79T^{2} \)
83 \( 1 - 14.2T + 83T^{2} \)
89 \( 1 - 11.3T + 89T^{2} \)
97 \( 1 - 11.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.95027483806111710042162768931, −11.66929483163137957912417928418, −10.34573827236301225286728455732, −9.677018859273705375482052255716, −8.522477930042910374593748983406, −7.76853425449103474434565916150, −6.23872052932777940841616403118, −5.16498978398196052586095633282, −3.36426087235987012026418663320, −2.14326713709089251974870539732, 2.14326713709089251974870539732, 3.36426087235987012026418663320, 5.16498978398196052586095633282, 6.23872052932777940841616403118, 7.76853425449103474434565916150, 8.522477930042910374593748983406, 9.677018859273705375482052255716, 10.34573827236301225286728455732, 11.66929483163137957912417928418, 12.95027483806111710042162768931

Graph of the $Z$-function along the critical line