Properties

Label 2-184-1.1-c1-0-1
Degree $2$
Conductor $184$
Sign $1$
Analytic cond. $1.46924$
Root an. cond. $1.21212$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s − 3·9-s + 6·11-s − 2·13-s + 6·17-s − 6·19-s + 23-s − 5·25-s − 6·29-s − 8·37-s + 6·41-s − 2·43-s − 8·47-s + 9·49-s − 8·53-s + 4·59-s − 4·61-s − 12·63-s + 2·67-s − 8·71-s + 6·73-s + 24·77-s + 12·79-s + 9·81-s + 10·83-s + 10·89-s − 8·91-s + ⋯
L(s)  = 1  + 1.51·7-s − 9-s + 1.80·11-s − 0.554·13-s + 1.45·17-s − 1.37·19-s + 0.208·23-s − 25-s − 1.11·29-s − 1.31·37-s + 0.937·41-s − 0.304·43-s − 1.16·47-s + 9/7·49-s − 1.09·53-s + 0.520·59-s − 0.512·61-s − 1.51·63-s + 0.244·67-s − 0.949·71-s + 0.702·73-s + 2.73·77-s + 1.35·79-s + 81-s + 1.09·83-s + 1.05·89-s − 0.838·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(184\)    =    \(2^{3} \cdot 23\)
Sign: $1$
Analytic conductor: \(1.46924\)
Root analytic conductor: \(1.21212\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 184,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.298974796\)
\(L(\frac12)\) \(\approx\) \(1.298974796\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 - T \)
good3 \( 1 + p T^{2} \)
5 \( 1 + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 + 8 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 - 12 T + p T^{2} \)
83 \( 1 - 10 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.30242903509008952465429621319, −11.65285962273059824600304475216, −10.90027717989387157107373838421, −9.505020586152698277492779622129, −8.532719042369230860273239674478, −7.65153069290109703677672880782, −6.23214576271461606194158210231, −5.07527273844982488833791664872, −3.76029121491255918011647406142, −1.77632184622518044349130059263, 1.77632184622518044349130059263, 3.76029121491255918011647406142, 5.07527273844982488833791664872, 6.23214576271461606194158210231, 7.65153069290109703677672880782, 8.532719042369230860273239674478, 9.505020586152698277492779622129, 10.90027717989387157107373838421, 11.65285962273059824600304475216, 12.30242903509008952465429621319

Graph of the $Z$-function along the critical line